Preview

Вопросы современной педиатрии

Расширенный поиск

Онтогенез и дизонтогенез микробиоты кишечника у детей раннего возраста: триггерный механизм нарушений детского здоровья

https://doi.org/10.15690/vsp.v16i1.1692

Аннотация

В статье представлен анализ исследований, в которых изучались становление и развитие микрофлоры (микробиоты) кишечника у детей и ее патогенетическая роль. Приведено описание этапов колонизации кишечника младенца, механизмов взаимовлияния микробиот младенца и матери. Показана связь динамики становления микробиоты ребенка с характером вскармливания; отмечена саногенетическая роль грудного вскармливания в отношении микрофлоры младенца. Представлены связь качественных и количественных характеристик микробиоты с отсроченными рисками развития метаболических и аллергических заболеваний. Особое внимание уделено анализу вли-
яния антибиотиков на становление микробиоты, в том числе у недоношенных детей. В статье представлены современные подходы к коррекции нарушений кишечной микробиоты препаратами-пробиотиками, обоснованы методы выбора пробиотиков. Одним из таких препаратов является зарегистрированный в России пробиотик, содержащий Bifidobacterium lactis BB-12 и Streptococcus thermophilus, который успешно используется для коррекции дисбиоза у новорожденных младенцев, в т. ч. у недоношенных.

Об авторах

И. А. Беляева
Национальный научно-практический центр здоровья детей
Россия
доктор медицинских наук, профессор РАН, профессор кафедры РНИМУ им. Н.И. Пирогова, заведующая отделением для недоношенных детей ННПЦЗД
Раскрытие интересов: сотрудничает с компанией «Пфайзер Инновации»


Е. П. Бомбардирова
Национальный научно-практический центр здоровья детей
Россия

Раскрытие интересов: отсутствие конфликта интересов, о котором необходимо сообщить


М. Д. Митиш
Национальный научно-практический центр здоровья детей
Россия

Раскрытие интересов: отсутствие конфликта интересов, о котором необходимо сообщить


Т. В. Потехина
Национальный научно-практический центр здоровья детей
Россия

Раскрытие интересов: отсутствие конфликта интересов, о котором необходимо сообщить


Н. А. Харитонова
Национальный научно-практический центр здоровья детей
Россия

Раскрытие интересов: отсутствие конфликта интересов, о котором необходимо сообщить


Список литературы

1. Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6):1258–1270. doi: 10.1016/j.cell.2012.01.035.

2. Cabreiro F, Gems D. Worms need microbes too: microbiota, health and aging in Caenorhabditis elegans. EMBO Mol Med. 2013;5(9):1300–1310. doi: 10.1002/emmm.201100972.

3. Hooper LV. Bacterial contributions to mammalian gut development. Trends Microbiol. 2004;12(3):129–134. doi: 10.1016/j.tim. 2004.01.001.

4. Turnbaugh PJ, Ley RE, Hamady M, et al. The human microbiome project. Nature. 2007;449(7164):804–810. doi: 10.1038/nature06244.

5. Godheja J, Shekhar SK, Modi DR. Advances in molecular biology approaches to guage microbial communities and bioremediation at contaminated sites. International Journal of Environmental Bioremediation & Biodegradation. 2014;2(4):167–177. doi:10.12691/ijebb-2-4-4.

6. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010; 464(7285):59–65. doi: 10.1038/nature08821.

7. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012; 486(7402):207–214. doi: 10.1038/nature11234.

8. Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99–103. doi: 10.1038/nature12198.

9. Li J, Jia H, Cai X, et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol. 2014;32(8):834–841. doi: 10.1038/nbt.2942.

10. Adlerberth I, Lindberg E, Aberg N, et al. Reduced enterobacterial and increased staphylococcal colonization of the infantile bowel: an effect of hygienic lifestyle? Pediatr Res. 2006;59(1):96–101. doi: 10.1203/01.pdr.0000191137.12774.b2.

11. Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971–11975. doi: 10.1073/pnas.1002601107.

12. Subramanian S, Huq S, Yatsunenko T, et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature. 2014;510(7505):417–421. doi: 10.1038/nature13421.

13. Chan YK, Estaki M, Gibson DL. Clinical consequences of dietinduced dysbiosis. Ann Nutr Metab. 2013;63 Suppl 2:28–40. doi: 10.1159/000354902.

14. Peris-Bondia F, Latorre A, Artacho A, et al. The active human gut microbiota differs from the total microbiota. PLoS One. 2011;6(7):e22448. doi: 10.1371/journal.pone.0022448.

15. Fava F, Danese S. Intestinal microbiota in inflammatory bowel disease: friend of foe? World J Gastroenterol. 2011;17(5):557–566. doi: 10.3748/wjg.v17.i5.557.

16. Guarner F, Malagelada JR. Gut flora in health and disease. Lancet. 2003;361(9356):512–519. doi: 10.1016/S0140-6736(03)12489-0.

17. Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90(3):859-904; doi: 10.1152/physrev.00045.2009.

18. Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl cad Sci U S A. 2004;101(44):15718–15723. doi: 10.1073/pnas.0407076101.

19. Backhed F, Ley RE, Sonnenburg JL, et al. Host–bacterial mutualism in the human intestine. Science. 2005;307(5717): 1915–1920. doi: 10.1126/science.1104816.

20. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature.2006;444(7122):1027–1031. doi: 10.1038/nature05414.

21. Koren O, Goodrich JK, Cullender TC, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150(3):470–480. doi: 10.1016/j.cell.2012.07.008.

22. Kalliomaki M, Kirjavainen P, Eerola E, et al. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol. 2001;107(1):129–134. doi:10.1067/mai.2001.111237.

23. Fujimura KE, Sitarik AR, Havstad S, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22(10):1187–1191. doi:10.1038/nm.4176.

24. Fujimura KE, Lynch SV. Microbiota in allergy and asthma and the emerging relationship with the gut microbiome. Cell Host Microbe. 2015;17(5):592–602. doi: 10.1016/j.chom.2015.04.007.

25. europa.eu [Internet]. European Commision. Ten Key Facts about Nutrition and Obesity. Nutrition and Obesity. Brussels, Belgium: European Commision; 2014 [cited 2017 Jun 29]. Available from:http://ec.europa.eu/health/archive/ph_determinants/life_style/nutrition/documents/10keyfacts_nut_obe.pdf.

26. Blake-Lamb TL, Locks LM, Perkins ME, et al. Interventions for childhood obesity in the first 1000 days: a systematic review. Am J Prev Med. 2016;50(6):780–789. doi: 10.1016/j.amepre.2015.11.010.

27. Samani NJ, Tomaszewski M, Schunkert H. The personal genome — the future of personalised medicine? Lancet. 2010;375(9725): 1497–1498. doi: 10.1016/S0140-6736(10)60598-3.

28. Graf C, Ferrari N. Metabolic syndrome in children and adolescents. Visc Med. 2016;32(5):357–362. doi: 10.1159/000449268.

29. Vrieze A, Holleman F, Zoetendal EG, et al. The environment within: how gut microbiota may influence metabolism and body composition. Diabetologia. 2010;53(4):606–613 doi: 10.1007/s00125-010-1662-7.

30. Ley RE, Backhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102(31): 11070–11075. doi: 10.1073/pnas.0504978102.

31. Kalliomaki M, Collado MC, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr. 2008;87(3):534–538.

32. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006; 444(7122):1022–1023. doi: 10.1038/4441022a.

33. Cotillard A, Kennedy SP, Kong LC, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500(7464):585–588. doi: 10.1038/nature12480.

34. Mshvildadze M, Neu J, Schuster J, et al. Intestinal microbial ecology in premature infants assessed with non-culture-based techniques. J Pediatr. 2010;156(1):20–25. doi: 10.1016/j.jpeds. 2009.06.063.

35. DiGiulio DB. Diversity of microbes in amniotic fluid. Semin Fetal Neonatal Med. 2012;17(1):2–11. doi: 10.1016/j.siny.2011.10.001.

36. Collado MC, Rautava S, Aakko J, et al. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016;6:23129. doi: 10.1038/srep23129.

37. Backhed F, Roswall J, Peng Y, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17(6):852. doi: 10.1016/j.chom.2015.05.012.

38. Gosalbes MJ, Llop S, Valles Y, et al. Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin Exp Allergy. 2013;43(2):198–211. doi: 10.1111/cea.12063.

39. Jakobsson HE, Abrahamsson TR, Jenmalm MC, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut. 2014;63(4):559–566. doi: 10.1136/gutjnl-2012-303249.

40. Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med. 2016;22(3):250–253. doi: 10.1038/nm.4039.

41. Makino H, Kushiro A, Ishikawa E, et al. Mother-to-infant transmission of intestinal bifidobacterial strains has an impact on the early development of vaginally delivered infant’s microbiota. PLoS One. 2013;8(11):e78331. doi: 10.1371/journal. pone.0078331.

42. Collado MC, Isolauri E, Laitinen K, Salminen S. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr. 2008;88(4):894–899.

43. Fernandez L, Langa S, Martin V, et al. The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res. 2013;69(1):1–10. doi: 10.1016/j.phrs.2012.09.001.

44. Cabrera-Rubio R, Collado MC, Laitinen K, et al. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr. 2012;96(3):544–551. doi: 10.3945/ajcn.112.037382.

45. Bergstrom A, Skov TH, Bahl MI, et al. Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of Danish infants. Appl Environ Microbiol. 2014;80(9): 2889–2900. doi: 10.1128/AEM.00342-14.

46. Palmer C, Bik EM, DiGiulio DB, et al. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5(7):e177. doi: 10.1371/journal.pbio.0050177.

47. Jost T, Lacroix C, Braegger CP, Chassard C. New insights in gut microbiota establishment in healthy breast fed neonates. PLoS One. 2012;7(8):e44595. doi: 10.1371/journal.pone.0044595.

48. Turroni F, Peano C, Pass DA, et al. Diversity of bifidobacteria with in the infant gut microbiota. PLoS One. 2012;7(5):e36957. doi: 10.1371/journal.pone.0036957.

49. Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, et al. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr. 2000;30(1):61–67. doi: 10.1097/00005176-200001000-00019.

50. Bezirtzoglou E, Tsiotsias A, Welling GW. Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe. 2011;17(6):478–482. doi:10.1016/j.anaerobe.2011.03.009.

51. Penders J, Vink C, Driessen C, et al. Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. FEMS Microbiol Lett. 2005;243(1):141–147. doi: 10.1016/j.femsle.2004.11.052.

52. Fallani M, Young D, Scott J, et al. Intestinal microbiota of 6-weekold infants across Europe: geographic influence Beyond delivery mode, breast-feeding, andantibiotics. J Pediatr Gastroenterol Nutr. 2010;51(1):77–84. doi: 10.1097/MPG.0b013e3181d1b11e.

53. Marques TM, Wall R, Ross RP, et al. Programming infant gut microbiota: influence of Dietary and environmental factors. Curr Opin Biotechnol. 2010;21(2):149–156. doi: 10.1016/j.copbio.2010.03.020.

54. Knol J, Boehm G, Lidestri M, et al. Increase of faecal bifidobacteria due to dietary oligosaccharides induces a reduction of clinically relevant pathogen germs in the faeces of formula-fed preterm infants. Acta Paediatr Suppl. 2005;94(449):31–33. doi: 10.1080/08035320510043529.

55. Lombard V, Golaconda Ramulu H, Drula E, et al. (2014). The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42(Database issue):D490-5. doi: 10.1093/nar/gkt1178.

56. Jost T, Lacroix C, Braegger CP, et al. Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding. Environ Microbiol. 2014;16(9):2891–1904. doi: 10.1111/1462-2920.12238.

57. Voreades N, Kozil A, Weir TL. Diet and the development of the human intestinal microbiome. Front Microbiol. 2014;5:494. doi: 10.3389/fmicb.2014.00494.

58. Vandenplas Y, De Greef E, Veereman G. Prebiotics in infant formula. Gut Microbes. 2014;5(6):681–687. doi: 10.4161/19490976.2014.972237.

59. Brussow H. Microbiota and healthy ageing: observational and nutritional intervention studies. Microb Biotechnol. 2013;6(4): 326–334. doi: 10.1111/1751-7915.12048.

60. Vangay P, Ward T, Gerber JS, Knights D. Antibiotics, pediatric dysbiosis, and disease. Cell Host Microbe. 2015;17(5):553–564. doi: 10.1016/j.chom.2015.04.006.

61. Biedermann L, Rogler G. The intestinal microbiota: its role in health and disease. Eur J Pediatr. 2015;174(2):151–167. doi: 10.1007/s00431-014-2476-2.

62. Nanthakumar N, Meng D, Goldstein AM, et al. The mechanism of excessive intestinal inflammation in necrotizing enterocolitis: an immature innate immune response. PLoS One. 2011;6(3):e17776. doi: 10.1371/journal.pone.0017776.

63. Sullivan S, Schanler RJ, Kim JH, et al. An exclusively human milkbased diet is associated with a lower rate of necrotizing enterocolitis than a diet of human milk and bovine milk-based products. J Pediatr. 2010;156(4):562–567.e1. doi: 10.1016/j.jpeds.2009.10.040.

64. Mai V, Young CM, Ukhanova M, et al. Fecal microbiota in premature infants prior to necrotizing enterocolitis. PLoS One. 2011;6(6):e20647. doi: 10.1371/journal.pone.0020647.

65. Breastfeeding and the use of human milk. Pediatrics. 2012; 129:e827–e841. doi: 10.1542/peds.2011-3552.

66. Alexander VN, Northrup V, Bizzarro MJ. Antibiotic exposure in the newborn intensive care unit and the risk of necrotizing enterocolitis. J Pediatr. 2011;159(3):392–397. doi: 10.1016/j.jpeds.2011.02.035.

67. Neu J. The microbiome and its impact on disease in the preterm patient. Curr Pediatr Rep. 2013;1(4):215–221. doi: 10.1007/s40124-013-0031-7.

68. who.int [Internet]. Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food. Guidelines for the evaluation of probiotics in food. London, Ontario, Canada; 2002. 11 p. [cited 2017 Jun 29]. Available from: http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf

69. Huff BA. Caveat emptor. «Probiotics» might not be what they seem. Can Fam Physician. 2004;50:583–587.

70. Lilly DM, Stillwell RH. Probiotics: growth-promoting factors produced by microorganisms. Science. 1965;147(3659):747–748. doi: 10.1126/science.147.3659.747.

71. Tissier H. Traitement des infections intestinales par la methode de la transformation de la flore bacterienne de l’intestin. (In French). C R Soc Biol. 1906;60:359–361.

72. Mugambi M, Musekiwa A, Lombard M, et al. Probiotics, prebiotics infant formula use in preterm or low birth weight infants: a systematic review. Nutr J. 2012;11(1):58. doi: 10.1186/1475-2891-11-58.

73. Presti I, D’Orazio G, Labra M, et al. Evaluation of the probiotic properties of new Lactobacillus and Bifidobacterium strains and their in vitro effect. Appl Microbiol Biotechnol. 2015;99(13): 5613–5626. doi: 10.1007/s00253-015-6482-8.

74. Sazawal S, Menon V, Deb S, et al. Efficacy of milk fortified with a probiotic Bifidobacterium lactis (DR-10TM) and prebiotic galactooligosaccharides in prevention of morbidity and on nutritional status. Asia Pac J Clin Nutr. 2004;13:S28.

75. Szajewska H, Setty M, Mrukowicz J, Guandalini S. Probiotics in gastrointestinal diseases in children: hard and not-so-hard evidence of efficacy. J Pediatr Gastroenterol Nutr. 2006;42(5):454–475. doi: 10.1097/01.mpg.0000221913.88511.72.

76. Thibault H, Aubert-Jacquin C, Goulet O. Effects of long-term consumption of a fermented infant formula (with Bifidobacterium breve c50 and Streptococcus thermophilus 065) on acute diarrhea in healthy infants. J Pediatr Gastroenterol Nutr. 2004;39:147–152. doi: 10.1097/00005176-200408000-00004.

77. Shamir R, Makhoul IR, Etzioni A, Shehadeh N. Evaluation of a diet containing probiotics and zinc for the treatment of mild diarrheal illness in children younger than one year of age. J Am Coll Nutr. 2005;24(5):370–375. doi: 10.1080/07315724.2005.10719487.

78. Isolauri E, Juntunen M, Rautanen T, et al. A human Lactobacillus strain (Lactobacillus casei sp strain GG) promotes recovery from acute diarrhea in children. Pediatrics. 1991;88(1):90–97. doi: 10.1203/00006450-199005000-00026.

79. Shornikova AV, Isolauri E, Burkanova L, et al. A trial in the Karelian Republic of oral rehydration and Lactobacillus GG for treatment of acute diarrhoea. Acta Paediatr. 1997;86(5):460–465. doi: 10.1111/j.1651-2227.1997.tb08913.x.

80. Shornikova AV, Casas IA, Mykkanen H, et al. Bacteriotherapy with Lactobacillus reuteri in rotavirus gastroenteritis. Pediatr Infect Dis J. 1997;16(12):1103–1107. doi: 10.1097/00006454-199712000-00002.

81. Allen SJ, Martinez EG, Gregorio GV, Dans LF. Probiotics for treating acute infectious diarrhoea. Cochrane Database Syst Rev. 2010;(11):CD003048. doi: 10.1002/14651858. CD003048.pub3.

82. Szajewska H, Ruszczynski M, Radzikowski A. Probiotics in the prevention of antibiotic-associated diarrhea in children: a metaanalysis of randomized controlled trials. J Pediatr. 2006;149(3): 367–372.e1. doi: 10.1016/j.jpeds.2006.04.053.

83. Indrio F, Di Mauro A, Riezzo G, et al. Prophylactic use of a probiotic in the prevention of colic, regurgitation, and functional constipation: a randomized clinical trial. JAMA Pediatr. 2014;168(3):228–233. doi: 10.1001/jamapediatrics.2013.4367.

84. Saavedra JM, Abi-Hanna A, Moore N, Yolken RH. Long-term consumption of infant formulas containing live probiotic bacteria: tolerance and safety. Am J Clin Nutr. 2004;79(2):261–267.

85. AlFaleh K, Anabrees J. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Evid Based Child Health. 2014; 9(3):584–671. doi: 10.1002/ebch.1976.

86. Martin CR, Walker WA. Probiotics: role in pathophysiology and prevention in necrotizing enterocolitis. Semin Perinatol. 2008;32(2):127–137. doi: 10.1053/j.semperi.2008.01.006.

87. Koletzko S. Probiotics and prebiotics for prevention of food allergy: indications and recommendations by societies and institutions. J Pediatr Gastroenterol Nutr. 2016;63 Suppl 1:S9–S10. doi: 10.1097/MPG.0000000000001220.

88. Kendler M, Uter W, Rueffer A, et al. Comparison of fecal microflora in children with atopic eczema/dermatitis syndrome according to IgE sensitization to food. Pediatr Allergy Immunol. 2006;17(2):141–147. doi: 10.1111/j.1399-3038.2005.00371.x.

89. Osborn DA, Sinn JK. Prebiotics in infants for prevention of allergic disease and food hypersensitivity. Cochrane Database Syst Rev. 2007;(4):CD006474. doi: 10.1002/14651858.CD006474.pub2.

90. Brouwer ML, Wolt-Plompen SA, Dubois AE, et al. No effects of probiotics on atopic dermatitis in infancy: a randomized placebocontrolled trial. Clin Exp Allergy. 2006;36(7):899–906. doi:10.1111/j.1365-2222.2006.02513.x.

91. Bukowska H, Pieczul-Mroz J, Jastrzebska M, et al. Decrease in fibrinogen and LDL-cholesterol levels upon supplementation of diet with Lactobacillus plantarum in subjects with moderately elevated cholesterol. Atherosclerosis. 1998;137(2):437–438. doi: 10.1016/S0021-9150(97)00283-9.

92. Kiessling G, Schneider J, Jahreis G. Long-term consumption of fermented dairy products over 6 months increases HDL cholesterol. Eur J Clin Nutr. 2002;56(9):843–849. doi: 10.1038/sj.ejcn.1601399.

93. Laitinen K, Poussa T, Isolauri E. Probiotics and dietary counselling contribute to glucose regulation during and after pregnancy: a randomized controlled trial. Br J Nutr. 2009;101(11):1679–1687. doi: 10.1017/S0007114508111461.

94. Probiotics. Med Lett Drugs Ther. 2007;49(1267):66–68.

95. Thompson C, McCarter YS, Krause PJ, Herson VC. Lactobacillus acidophilus sepsis in a neonate. J Perinatol. 2001;21(4):258–260. doi: 10.1038/sj.jp.7200509.

96. Беляева И.А., Бомбардирова Е.П., Турти Т.В., и др. Кишечная микробиота у недоношенных детей: современное состояние проблемы (обзор литературы) // Педиатрическая фармакология. — 2015. — Т. 12. — № 3 — С. 296–303. [Belyaeva IA,Bombardirova EP, Turti TV, et al. Intestinal microbiota in premature children: the modern state of the problem (literature analysis). Pediatric pharmacology. 2015;12(3):296–303. (In Russ).] doi: 10.15690/pf.v12i3.1354.


Рецензия

Для цитирования:


Беляева И.А., Бомбардирова Е.П., Митиш М.Д., Потехина Т.В., Харитонова Н.А. Онтогенез и дизонтогенез микробиоты кишечника у детей раннего возраста: триггерный механизм нарушений детского здоровья. Вопросы современной педиатрии. 2017;16(1):29-38. https://doi.org/10.15690/vsp.v16i1.1692

For citation:


Belyaeva I.A., Bombardirova E.P., Mitish M.D., Potekhina T.V., Kharitonova N.A. Ontogenesis and Dysontogenesis of the Gut Microbiota in Young Children: a Trigger Mechanism of Child Health Disorders. Current Pediatrics. 2017;16(1):29-38. (In Russ.) https://doi.org/10.15690/vsp.v16i1.1692

Просмотров: 3364


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)