Preview

Вопросы современной педиатрии

Расширенный поиск

Кишечная микробиота: формирование в раннем возрасте, влияние на здоровье, способы коррекции

https://doi.org/10.15690/vsp.v16i6.1821

Аннотация

Увеличение распространенности случаев заболеваний, возникающих в результате нарушений метаболизма и функций иммунной системы, во многом связано с  патологическими отклонениями в составе кишечной микробиоты в раннем возрасте. В  обзоре рассматриваются этапы и условия естественного развития кишечной микробиоты,  начиная с внутриутробного  периода. Проведен анализ возможных факторов риска нарушений состава кишечной  микробиоты в пре- и постнатальный периоды. Приведены результаты современных  исследований об ассоциации между составом кишечной микробиоты в младенческом возрасте и развитием «болезней цивилизации» — в более старшем. Отдельный раздел посвящен  обсуждению результативности и целесообразности приема пробиотических препаратов с целью профилактики заболеваний.

Об авторах

А. С. Якушин
ООО «Центр семейной медицины»
Россия

врач-терапевт ООО «Центр семейной медицины»

Адрес: 630090, Новосибирск, ул. Правды, д. 8



С. Е. Украинцев
Национальный медицинский исследовательский центр здоровья детей OOO «Нестле Россия»
Россия

Раскрытие интересов:

является сотрудником ООО «Нестле Россия»



М. Ю. Денисов
Институт медицины и психологии Новосибирского национального исследовательского государственного университета
Россия


Список литературы

1. Escherich T. [Die darmbakterien des sauglings und ihre beziehungen zur physiologie der Verdauung. (In German).] London: Forgotten Books; 2017. 196 p.

2. Jimenez E, Marin M, Martin R, et al. Is meconium from healthy newborns actually sterile? Res Microbiol. 2008;159(3):187–193. doi: 10.1016/j.resmic.2007.12.007.

3. Hu J, Nomura Y, Bashir A, et al. Diversified microbiota of meconium is affected by maternal diabetes status. PLoS One. 2013; 8(11):e78257. doi: 10.1371/journal.pone.0078257.

4. Ardissone A, de la Cruz D, Davis-Richardson A, et al. Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS One. 2014;9(3):e90784. doi: 10.1371/journal.pone.0090784.

5. Collado M, Rautava S, Aakko J, et al. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016;6(1):23129. doi: 10.1038/srep23129.

6. Onderdonk A, Hecht J, McElrath T, et al. Colonization of second-trimester placenta parenchyma. Am J Obstet Gynecol. 2008; 199(1):52.e1–52.e10. doi: 10.1016/j.ajog.2007.11.068.

7. Aagaard K, Ma J, Antony K, et al. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6(237):237ra65. doi: 10.1126/scitranslmed.3008599.

8. Pal C, Bengtsson-Palme J, Kristiansson E, Larsson D. The structure and diversity of human, animal and environmental resistomes. Microbiome. 2016;4(1):54. doi: 10.1186/s40168-016-0199-5.

9. Pretorius C, Jagatt A, Lamont R. The relationship between periodontal disease, bacterial vaginosis, and preterm birth. J Perinat Med. 2007;35(2):93–99. doi: 10.1515/jpm.2007.039.

10. Shiozaki A, Yoneda S, Yoneda N, et al. Intestinal microbiota is different in women with preterm birth: results from terminal restriction fragment length polymorphism analysis. PLoS One. 2014;9(11):e111374. doi: 10.1371/journal.pone.0111374.

11. Tan Q, Xu H, Xu F, et al. Survival, distribution, and translocation of Enterococcus faecalis and implications for pregnant mice. FEMS Microbiol Lett. 2013;349(1):32–39. doi: 10.1111/1574-6968.12280.

12. Fusunyan R, Nanthakumar N, Baldeon M, Walker W. Evidence for an innate immune response in the immature human intestine: toll-like receptors on fetal enterocytes. Pediatr Res. 2001;49(4): 589–593. doi: 10.1203/00006450-200104000-00023.

13. Leeansyah E, Loh L, Nixon D, Sandberg J. Acquisition of innatelike microbial reactivity in mucosal tissues during human fetal MAIT-cell development. Nat Commun. 2014;5:3143. doi: 10.1038/ncomms4143.

14. Cao B, Stout M, Lee I, Mysorekar I. Placental microbiome and its role in preterm birth. Neoreviews. 2014;15(12):e537–e545. doi: 10.1542/neo.15-12-e537.

15. Doyle R, Alber D, Jones H, et al. Term and preterm labour are associated with distinct microbial community structures in placental membranes which are independent of mode of delivery. Placenta. 2014;35(12):1099–1101. doi: 10.1016/j.placenta.2014.10.007.

16. Neu J. The microbiome during pregnancy and early postnatal life. Semin Fetal Neonatal Med. 2016;21(6):373–379. doi: 10.1016/j.siny.2016.05.001.

17. Chan K, Ho J, Chan K, Tam P. A study of gut immunity to enteral endotoxin in rats of different ages: a possible cause for necrotizing enterocolitis. J Pediatr Surg. 2002;37(10):1435–1440. doi: 10.1053/jpsu.2002.35407.

18. Romero R, Espinoza J, Goncalves L, et al. The role of inflammation and infection in preterm birth. Semin Reprod Med. 2007;25(1):21–39. doi: 10.1055/s-2006-956773.

19. Pacora P, Chaiworapongsa T, Maymon E, et al. Funisitis and chorionic vasculitis: the histological counterpart of the fetal inflammatory response syndrome. J Matern Fetal Neonatal Med. 2002;11(1):18–25. doi: 10.1080/713605445.

20. Collado M, Cernada M, Neu J, et al. Factors influencing gastrointestinal tract and microbiota immune interaction in preterm infants. Pediatr Res. 2015;77(6):726–731. doi: 10.1038/pr.2015.54.

21. Abrahamsson T, Jakobsson H, Andersson A, et al. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol. 2012;129(2):434–440.e2. doi: 10.1016/j.jaci.2011.10.025.

22. Madan J, Salari R, Saxena D, et al. Gut microbial colonisation in premature neonates predicts neonatal sepsis. Arch Dis Child Fetal Neonatal Ed. 2012;97(6):F456–F462. doi:10.1136/fetalneonatal-2011-301373.

23. Koleva P, Kim J, Scott J, Kozyrskyj A. Microbial programming of health and disease starts during fetal life. Birth Defects Res C Embryo Today. 2015;105(4):265–277. doi: 10.1002/bdrc.21117.

24. Metsala J, Lundqvist A, Virta LJ, et al. Mother’s and offspring’s use of antibiotics and infant allergy to cow’s milk. Epidemiology. 2013;24(2):303–309. doi: 10.1097/EDE.0b013e31827f520f.

25. Hornef M, Penders J. Does a prenatal bacterial microbiota exist? Mucosal Immunol. 2017;10(3):598–601. doi: 10.1038/mi.2016.141.

26. Pantoja-Feliciano I, Clemente J, Costello E, et al. Biphasic assembly of the murine intestinal microbiota during early development. ISME J. 2013;7(6):1112–1115. doi: 10.1038/ismej.2013.15.

27. Dominguez-Bello M, Costello E, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010;107(26):11971–11975. doi: 10.1073/pnas.1002601107.

28. Biasucci G, Benenati B, Morelli L, et al. Cesarean delivery may affect the early biodiversity of intestinal bacteria. J Nutr. 2008;138(9):1796–1800.

29. Azad M, Konya T, Persaud R, et al. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG. 2015;123(6):983–993. doi: 10.1111/1471-0528.13601.

30. Chu D, Ma J, Prince A, et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 2017;23(3):314–326. doi: 10.1038/nm.4272.

31. Fouhy F, Guinane C, Hussey S, et al. High-throughput sequen cing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrob Agents Chemother. 2012;56(11):5811–5820. doi: 10.1128/aac.00789-12.

32. Tanaka S, Kobayashi T, Songjinda P, et al. Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol Med Microbiol. 2009;56(1):80–87. doi: 10.1111/j.1574-695x.2009.00553.x.

33. Azad M, Bridgman S, Becker A, Kozyrskyj A. Infant antibiotic exposure and the development of childhood overweight and central adiposity. Int J Obes (Lond). 2014;38(10):1290–1298. doi: 10.1038/ijo.2014.119.

34. Risnes K, Belanger K, Murk W, Bracken M. Antibiotic exposure by 6 months and asthma and allergy at 6 years: findings in a cohort of 1,401 US children. Am J Epidemiol. 2010;173(3):310–318. doi: 10.1093/aje/kwq400.

35. Cabrera-Rubio R, Collado M, Laitinen K, et al. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr. 2012;96(3):544–551. doi: 10.3945/ajcn.112.037382.

36. Hooper L, Littman D, Macpherson A. Interactions between the microbiota and the immune system. Science. 2012;336(6086): 1268–1273. doi: 10.1126/science.1223490.

37. Bourges D, Meurens F, Berri M, et al. New insights into the dual recruitment of IgA+ B- cells in the developing mammary gland. Mol Immunol. 2008;45(12):3354–3362. doi: 10.1016/j.molimm.2008.04.017.

38. Magne F, Hachelaf W, Suau A, et al. A longitudinal study of infant faecal microbiota during weaning. FEMS Microbiol Ecol. 2006;58(3):563–571. doi: 10.1111/j.1574-6941.2006.00182.x.

39. Fan W, Huo G, Li X, et al. Diversity of the intestinal microbiota in different patterns of feeding infants by Illumina highthroughput sequencing. World J Microbiol Biotechnol. 2013;29(12): 2365–2372. doi: 10.1007/s11274-013-1404-3.

40. Bezirtzoglou E, Tsiotsias A, Welling G. Microbiota profile in feces of breast- and formula- fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe. 2011;17(6):478– 482. doi: 10.1016/j.anaerobe.2011.03.009.

41. Turroni F, Peano C, Pass D, et al. Diversity of bifidobacteria within the infant gut microbiota. PLoS One. 2012;7(5):e36957. doi: 10.1371/journal.pone.0036957.

42. Davis E, Wang M, Donovan S. The role of early life nutrition in the establishment of gastrointestinal microbial composition and function. Gut Microbes. 2017;8(2):143–171. doi: 10.1080/19490976.2016.1278104.

43. Johansson M, Sjogren Y, Persson J, et al. Early colonization with a group of Lactobacilli decreases the risk for allergy at five years of age despite allergic heredity. PLoS One. 2011;6(8):e23031. doi: 10.1371/journal.pone.0023031.

44. Bisgaard H, Li N, Bonnelykke K, et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol. 2011;128(3):646–652.e5. doi: 10.1016/j.jaci.2011.04.060.

45. Samuel B, Gordon J. A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc Natl Acad Sci USA. 2006;103(26):10011–10016. doi: 10.1073/pnas.0602187103.

46. Walker W. Bacterial colonization of the newborn gut, immune development, and prevention of disease. Nestle Nutr Inst Workshop Ser. 2017;88:23–33. doi: 10.1159/000455210.

47. Abrahamsson T, Jakobsson H, Andersson A, et al. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol. 2012;129(2):434–440.e2. doi: 10.1016/j.jaci.2011.10.025.

48. Ismail I, Oppedisano F, Joseph S, et al. Reduced gut microbial diversity in early life is associated with later development of eczema but not atopy in high-risk infants. Pediatr Allergy Immunol. 2012;23(7):674–681. doi:10.1111/j.1399-3038.2012.01328.x.

49. Sjogren Y, Jenmalm M, Bottcher M, et al. Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clin Exp Allergy. 2009;39(4):518–526. doi: 10.1111/j.1365-2222.2008.03156.x.

50. Isolauri E. Microbiota and obesity. Nestle Nutr Inst Workshop Ser. 2017;88:95–105. doi: 10.1159/000455217.

51. Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA. 2004;101(44):15718–15723. doi: 10.1073/pnas.0407076101.

52. Kalliomaki M, Collado M, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr. 2008;87(3):534–538.

53. Gosalbes M, Llop S, Valles Y, et al. Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin Exp Allergy. 2013;43(2):198–211. doi: 10.1111/cea.12063.

54. Dogra S, Sakwinska O, Soh S, et al. Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity. M Bio. 2015;6(1):e02419-14. doi: 10.1128/mbio.02419-14.

55. Collado M, Isolauri E, Laitinen K, Salminen S. Distinct composition of gut microbiota during pregnancy in overweight and normalweight women. Am J Clin Nutr. 2008;88(4):894–899.

56. Abrahamsson T, Jakobsson T, Bottcher M, et al. Probiotics in prevention of IgE- associated eczema: a double-blind, randomized, placebo-controlled trial. J Allergy Clin Immunol. 2007;119(5): 1174–1180. doi: 10.1016/j.jaci.2007.01.007.

57. Deshpande G, Rao S, Patole S, Bulsara M. Updated metaanalysis of probiotics for preventing necrotizing enterocolitis in preterm neonates. Pediatrics. 2010;125(5):921–930. doi: 10.1542/peds.2009-1301.

58. Guthmann F, Kluthe C, Buhrer C. Probiotics for prevention of necrotising enterocolitis: an updated meta-analysis. Klin Padiatr. 2010;222(05):284–290. doi: 10.1055/s-0030-1254113.

59. Mueller N, Bakacs E, Combellick J, et al. The infant microbiome development: mom matters. Trends Mol Med. 2015;21(2): 109–117. doi: 10.1016/j.molmed.2014.12.002.


Рецензия

Для цитирования:


Якушин А.С., Украинцев С.Е., Денисов М.Ю. Кишечная микробиота: формирование в раннем возрасте, влияние на здоровье, способы коррекции. Вопросы современной педиатрии. 2017;16(6):487-492. https://doi.org/10.15690/vsp.v16i6.1821

For citation:


Yakushin A.S., Ukraintsev S.E., Denisov M.Yu. Intestinal Microbiota: Early Formation, Health Effects, and Correction Ways. Current Pediatrics. 2017;16(6):487-492. (In Russ.) https://doi.org/10.15690/vsp.v16i6.1821

Просмотров: 940


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)