Svetlana G. Makarova^{1, 2}, Oksana A. Vrzhesinskaya³, Vera M. Kodentsova³, Olga G. Pereverzeva³, Svetlana N. Leonenko³, Tatiana V. Turti^{1, 2}, Dmitry S. Yasakov¹

¹ National Medical Research Center of Children's Health, Moscow, Russian Federation

² Pirogov Russian National Research Medical University, Moscow, Russian Federation
³ Federal Research Center for Nutrition, Biotechnology and Food Safety, Moscow, Russian

Federation

Urinary Excretion of Water-Soluble Vitamins (C, B₁, B₂, and B₆) in Healthy Children of Preschool and School Age: A Cross-Sectional Study

Corresponding author:

Dmitry S. Yasakov, Junior Researcher, Department of Preventive Pediatrics, Research Institute of Pediatrics, NMRC of Children's Health

Address: 2/1, Lomonosov Ave., Moscow 119991, e-mail: <u>dmyasakov@mail.ru</u> Article received: Dec 12, 2017; submitted to publication: Feb 26, 2018

Background. Children of preschool and school age are at risk of developing vitamin deficiency. Screening of the vitamin provision of children remains an urgent problem of pediatrics. **Objective.** Our aim was to determine the prevalence of low excretion of water-soluble vitamins among healthy preschool and school-age children. Methods. The study was conducted in March-April 2017. We determined the urinary excretion (fasting morning portion collected during 30-120 min after night-time urination) of metabolites of vitamins C, B_1 , B_2 and B_6 in healthy children. Riboflavin (vitamin B_2 metabolite) was determined spectrophotometrically by titration with a riboflavin-binding apoprotein; 4-pyridoxyl acid (vitamin B_6 metabolite) and thiamine (vitamin B_1 metabolite) — by fluorescent method, ascorbic acid (vitamin C metabolite) — by visual titration with Tillman's reagent. The excretion considered to be low (equivalent to vitamin deficiency) when thiamine excretion was <7, 10, 11 and 12 µg/h and riboflavin 6, 9, 10 and 13 μ g/h in children aged 3-5, 6-8, 9-11 and above 12 years, respectively; 4-pyridoxylic acid — <40, 60 and 70 µg/h in children aged 3–5, 6–8 and \geq 9 years, ascorbic acid — <0.2 and 0.4 mg/h in children aged 3-11 and ≥ 12 years, respectively. **Results**. Metabolites were excreted in 39 children (20 girls), 14 of them aged 4–6 years and 25 children aged 7-14 years. A low level of ascorbic acid excretion was found in 13 (33%) children, of thiamine — in 24 (62%), of riboflavin — in 16 (41%), of 4-pyridoxyl acid — in 26 (67%). Low excretion of at least one vitamin metabolite was detected in 30 (77%) children, of 3 or more metabolites simultaneously – in 15 (39%). Conclusion. A low level of urinary excretion of metabolites of at least one watersoluble vitamin (C, B_1 , B_2 , and B_6) occurs in most preschool and school-age children. *Key words*: children, water-soluble vitamins, metabolites, excretion, urine, deficiency, screening. (For citation: Makarova Svetlana G., Vrzhesinskava Oksana A., Kodentsova Vera M., Pereverzeva Olga G., Leonenko Svetlana N., Turti Tatiana V., Yasakov Dmitry S. Urinary Excretion of Water-Soluble Vitamins (C, B₁, B₂, and B₆) in Healthy Children of Preschool and School Age: A Cross-Sectional Study. Voprosy sovremennoi pediatrii — Current Pediatrics. 2018; 17 (1): 70–75. doi: 10.15690/vsp.v17i1.1857).

FINANCING SOURCE Not specified.

CONFLICT OF INTERESTS

Svetlana G. Makarova – scientific consultant of Nutricia company.

Tatiana V. Turti – receiving a research grant from Nutricia Advance for the research work "Assessing the Influence of Specialized Infant Milk Product for Enteral Nutrition Infatrini on the Nutritional Status of Young Children With Delayed Physical Development (production of N.V. Nutricia, The Netherlands)."

The other contributors confirmed the absence of a reportable conflict of interests.

Table 1. One-hour urinar	v excretion of metabolites of vitamin C and B vitamins in childre	en
--------------------------	---	----

Table 1. One-nour utiliary excletion of metabolities of vitalinin C and B vitalinins in clindren							
Indicator	Values		Low urinary				
	Median	min-max	excretion, abs.				
	(25th; 75th percentile)		(%)				
	· · · · · ·						
Ascorbic acid, mg/h	0.37 (0.20; 0.68)	0.01-1.80	13 (33)				
Thiamine, µg/h	8.2 (4.9; 23.8)	0.4-35.2	24 (62)				
Riboflavin, µg/h	12.2 (7.0; 13.9)	0.6-64.6	16 (41)				
4-pyridoxy acid, µg/h	37.5 (28.2; 62.6)	1.9–119	26 (67)				

Table 2. Low urinary excretion of metabolites of vitamin C and B vitamins in preschool and school age children

Indicator	Children 4-6 years old n = 14	Children 7-14 years old n = 25	р			
Ascorbic acid, abs. (%)	5 (36)	8 (32)	1.000			
Thiamine, abs. (%)	6 (43)	18 (72)	0.095			
Riboflavin, abs. (%)	4 (29)	12 (48)	0.317			
4-pyridoxyl acid, abs. (%)	9 (64)	17 (68)	1.000			
Low excretion						
Of at least one metabolite, abs. (%)	4 (29)	5 (20)	0.696			
Of 1-2 metabolites simultaneously, abs. (%)	3 (23)	9 (36)	0.477			
Of \geq 3 metabolites simultaneously, abs. (%)	4 (29)	11 (44)	0.496			

Note. Criteria for low excretion for each metabolite of vitamins, taking into account the age of children, are presented in the METHODS section («Methods for registering study outcomes»).