Spinal Muscular Atrophy 5q under the Mask of Myopathy: 10 Clinical Cases
https://doi.org/10.15690/vsp.v20i6S.2365
Abstract
Background. Spinal muscular atrophy 5q (5q SMA) is the most frequent autosomal recessive hereditary neuromuscular disease. Molecular genetic testing is used for SMA diagnosis, and it can confirm only 5q SMA. The clinical findings and results of paraclinical studies may overlap with hereditary primary-muscular diseases making the diagnosis difficult and delaying the administration of pathogenetic treatment for 5q SMA.
Clinical case description. Clinical description of 10 patients with 5q SMA aged from 3 months to 25 years with different severity of proximal tetraparesis, skeletal muscular atrophy and tendon reflexes depression is given. 3 patients under 2 years of age with myogenic pattern at needle electromyography (nEMG) in lateral vastus muscle and 7 patients over 2 years of age with increased levels of creatine phosphokinase (CPK) in blood serum were mistakenly diagnosed for inherited primary-muscular diseases for the period from 1 month to 12 years. After the genetic counselling based on the disease course and clinical findings we suspected and later confirmed 5q SMA.
Conclusion. In case of flaccid proximal tetraparesis associated with myogenic pattern at nEMG in young children or with increased CPK levels at late manifestation it is crucial to perform differential diagnosis of 5q SMA since there are options of pathogenetic therapy.
About the Author
Sergei A. KurbatovRussian Federation
Voronezh;
Moscow
Disclosure of interest:
Sergei A. Kurbatov — lecturing for pharmaceutical companies “Janssen”, “Sanofi Aventis Group”, “Takeda”.
References
1. Kolb SJ, Kissel JT. Spinal muscular atrophy: a timely review. Arch Neurol. 2011;68(8):979–984. doi: 10.1001/archneurol.2011.74
2. Verhaart IEC, Robertson A, Wilson IJ, et al. Prevalence, Incidence and Carrier Frequency of 5q-Linked Spinal Muscular Atrophy — A Literature Review. Orphanet J Rare Dis. 2017;12(1):124. doi: 10.1186/s13023-017-0671-8
3. Zabnenkova VV, Shchagina OA, Polyakov AV. Carrier screen of spinal muscular atrophy using a new medical technology “Quantitative detection methods of copy number analysis of SMA locus genes”. Medical Genetics. 2016;15(2):18–23. (In Russ). doi: 10.1234/XXXX-XXXX-2016-2-18-23
4. Lefebvre S, Burglen L, Reboullet S, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995;80(1):155–165. doi: 10.1016/0092-8674(95)90460-3
5. Zabnenkova VV, Dadali EL, Polyakov AV. Proximal spinal muscular atrophy types I-IV: Specific features of molecular genetic diagnosis. Neuromuscular Diseases. 2013;(3):27–31. (In Russ). doi: 10.17650/2222-8721-2013-0-3-27-31
6. Ross LF, Kwon JM. Spinal Muscular Atrophy: Past, Present, and Future. Neoreviews. 2019;20(8):437–451. doi: 10.1542/neo.20-8-e437
7. Kolb SJ, Coffey CS, Yankey JW, et al. Natural history of infantileonset spinal muscular atrophy. Ann Neurol. 2017;82(6):883–891. doi: 10.1002/ana.25101
8. FDA approves first drug for spinal muscular atrophy. In: U.S. FOOD & DRUG Administration. December 23, 2016. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-drug-spinal-muscular-atrophy. Accessed on December 25, 2021.
9. Proksimal’naya spinal’naya myshechnaya atrofiya 5q: Clinical guidelines. Ministry of Health of the Russian Federation; 2020. (In Russ). Доступно по: https://cr.minzdrav.gov.ru/recomend/593_1. Ссылка активна на 25.12.2021.
10. Dangouloff T, Servais L. Clinical evidence supporting early treatment of patients with spinal muscular atrophy: current perspectives. Ther Clin Risk Manag. 2019;15:1153–1161. doi: 10.2147/TCRM.S172291
11. Kennedy RA, Carroll K, McGinley JL, Paterson KL. Walking and weakness in children: a narrative review of gait and functional ambulation in paediatric neuromuscular disease. J Foot Ankle Res. 2020;13(1):10. doi: 10.1186/s13047-020-0378-2
12. Revisions: 1996–2021 [Update 24.11.2021]. In: Neuromuscular disease center. Washington University, St. Louis, MO USA. Available online: https://neuromuscular.wustl.edu/rev.htm. Accessed on December 25, 2021.
13. Rebrikov DV, Korostin DO, Shubina ES, Il’inskii VV. NGS: vysokoproizvoditel’noe sekvenirovanie. 2nd ed. Moscow: BINOM; 2015. p. 209. (In Russ).
14. Monies D, Alhindi HN, Almuhaizea MA, et al. A first-line diagnostic assay for limb-girdle muscular dystrophy and other myopathies. Hum Genomics. 2016;10(1):32. doi: 10.1186/s40246-016-0089-8
15. Lin CW, Kalb SJ, Yeh WS. Delay in diagnosis of spinal muscular atrophy: a systematic literature review. Pediatr Neurol. 2015;53(4):293–300. doi: 10.1016/j.pediatrneurol.2015.06.002
16. Lawton S, Hickerton C, Archibald AD, et al. A mixed methods exploration of families’ experiences of the diagnosis of childhood spinal muscular atrophy. Eur J Hum Genet. 2015;23(5):575–580. doi: 10.1038/ejhg.2014.147
17. Nikitin SS. Electromyographic stages of denervation/reinnervation process in neuromuscular diseases: need for revision. Neuromuscular Diseases. 2015;5(2): 16–24. (In Russ). doi: 10.17650/2222-8721-2015-5-2-16-24
18. Neuromuscular Laboratory Testing [Update 24.11.2021]. In: Neuromuscular disease center. Washington University, St. Louis, MO USA. Available online: https://neuromuscular.wustl.edu/lab/nvworkup.htm#lab. Accessed on December 25, 2021.
19. Arnold WD, Kassar D, Kissel JT. Spinal muscular atrophy: diagnosis and management in a new therapeutic era. Muscle Nerve. 2015;51(2):157–167. doi: 10.1002/mus.24497
20. MRI Patterns of Neuromuscular Disease Involvement. Thigh & Other Muscles [Update 24.08.2021]. In: Neuromuscular disease center. Washington University, St. Louis, MO USA. Available online: https://neuromuscular.wustl.edu/pathol/diagrams/musclemri.htm. Accessed on December 25, 2021.
21. Po porucheniyu Predsedatelya Pravitel’stva Minzdrav prorabotaet vopros o rasshirenii neonatal’nogo skrininga do 36 zabolevanii. [Published on June 01, 2021 at 18:04. Updated on 01 June 2021 at 18:04]. In: Internet resource of the Ministry of Health of the Russian Federation. (In Russ). Доступно по: https://minzdrav.gov.ru/news/2021/06/01/16743-po-porucheniyu-predsedatelya-pravitelstvaminzdrav-prorabotaet-vopros-o-rasshirenii-neonatalnogo-skrininga-do36-zabolevaniy. Ссылка активна на 25.12.2021.
22. Witherick J, Brady S. Update on muscle disease. J Neurol. 2018; 265(7):1717–1725. doi: 10.1007/s00415-018-8856-1.
23. Chien YH, Hwu WL, Lee NC. Pompe disease: early diagnosis and early treatment make a difference. Pediatr Neonatol. 2013; 54(4):219–227. doi: 10.1016/j.pedneo.2013.03.009
24. Rivier F, Meyer P, Walther-Louvie U, et al. Congenital muscular dystrophies: classification and diagnostic strategy. Neuromuscular Diseases. 2014;(1): 6–20. (In Russ). doi: 10.17650/2222-8721-2014-0-1-6-14
25. Kurbatov SA, Tsy gan kova PG, Mollaeva KYu, et al. Infantile and early childhood onset of mitochondrial myopathy due to mutations in the TK2 gene with a phenotype of spinal muscular atrophy 5q: the first cases in Russia. Neuromuscular Diseases. 2019;9(3):67–76. (In Russ). doi: 10.17650/2222-8721-2019-9-3-57-76
Review
For citations:
Kurbatov S.A. Spinal Muscular Atrophy 5q under the Mask of Myopathy: 10 Clinical Cases. Current Pediatrics. 2021;20(6s):576-580. (In Russ.) https://doi.org/10.15690/vsp.v20i6S.2365