The Choice of Product for Mixed or Formula Feeding of Infant: Beneficial Properties of Goat’s Milk Formula
https://doi.org/10.15690/vsp.v21i6.2469
Abstract
This review summarizes the benefits of goat’s milk as the basis to produce adapted milk formulas according to relevant infants feeding issues. The characteristics of main nutrients of modern goat’s milk formulas are presented. A balanced protein composition enriched with [1]-palmitate, presence of prebiotics-oligosaccharides, natural nucleotides and probiotics advances these formulas closer to breast milk and provide their multipotent sanogenetic effects. The unique composition of goat’s milk formulas allows to ensure normal physical growth of a baby, induces tissue and systemic immunity via adequate intestinal microbiota formation, maintains normal functioning of gut-brain axis, that promotes vegetative and visceral disorders (due to functional digestive disorders) correction. Thus, it is possible to recommend goat’s milk formulas in cases of forced mixed or formula feeding of healthy infants and children with functional digestive disorders.
Keywords
About the Authors
Irina A. BelyaevaRussian Federation
Moscow
Disclosure of interest:
Authors confirmed the absence of a reportable conflict
of interests.
Elena P. Bombardirova
Russian Federation
Moscow
Disclosure of interest:
Authors confirmed the absence of a reportable conflict
of interests.
Tatiana V. Turti
Russian Federation
Moscow
Disclosure of interest:
Authors confirmed the absence of a reportable conflict
of interests.
References
1. Matonti L, Blasetti A, Chiarelli F. Nutrition and growth in children. Minerva Pediatr. 2020;72(6):462–471. doi: https://doi.org/10.23736/S0026-4946.20.05981-2
2. Singhal A. The role of infant nutrition in the global epidemic of non-communicable disease. Proc Nutr Soc. 2016;75(2):162–168. doi: https://doi.org/10.1017/S0029665116000057
3. Koletzko B, Demmelmair H, Grote V, Totzauer M. Optimized protein intakes in term infants support physiological growth and promote long-term health. Semin Perinatol. 2019;43(7):151153. doi: https://doi.org/10.1053/j.semperi.2019.06.001
4. Jena A, Montoya CA, Mullaney JA, et al. Gut-Brain Axis in the Early Postnatal Years of Life: A Developmental Perspective. Front Integr Neurosci. 2020;14:44. doi: https://doi.org/10.3389/fnint.2020.00044
5. Indrio F, Neu J, Pettoello-Mantovani M, et al. Development of the Gastrointestinal Tract in Newborns as a Challenge for an Appropriate Nutrition: A Narrative Review. Nutrients. 2022;14(7):1405. doi: https://doi.org/10.3390/nu14071405
6. Ratsika A, Codagnone MC, O’Mahony S, et al. Priming for Life: Early Life Nutrition and the Microbiota-Gut-Brain Axis. Nutrients. 2021 Jan 28;13(2):423. doi: https://doi.org/10.3390/nu13020423
7. Bischoff SC. ‘Gut health’: a new objective in medicine? BMC Med. 2011;9:24. doi: https://doi.org/10.1186/1741-7015-9-24
8. Marchesi JR, Adams DH, Fava F, et al. The gut microbiota and host health: a new clinical frontier. Gut. 2016;65(2):330–339. doi: https://doi.org/10.1136/gutjnl-2015-309990
9. Wan MLY, Ling KH, El-Nezami H, Wang MF. Influence of functional food components on gut health. Crit Rev Food Sci Nutr. 2019;59(12):1927–1936. doi: https://doi.org/10.1080/10408398.2018.1433629
10. Meddings J. The significance of the gut barrier in disease. Gut. 2008;57(4):438–440. doi: https://doi.org/10.1136/gut.2007.143172
11. Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol. 2009;124(1):3–20; quiz 21–22. doi: https://doi.org/10.1016/j.jaci.2009.05.038
12. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268–1273. doi: https://doi.org/10.1126/science
13. Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489(7415):231–241. doi: https://doi.org/10.1038/nature11551
14. Pettersen VK, Arrieta MC. Host-microbiome intestinal interactions during early life: considerations for atopy and asthma development. Curr Opin Allergy Clin Immunol. 2020;20(2):138–148. doi: https://doi.org/10.1097/ACI.0000000000000629
15. Scheepers LE, Penders J, Mbakwa CA, et al. The intestinal microbiota composition and weight development in children: the KOALA Birth Cohort Study. Int J Obes. 2015;39(1):16–25. doi: https://doi.org/10.1038/ijo.2014.178
16. Gubatan J, Boye TL, Temby M, et al. Gut Microbiome in Inflammatory Bowel Disease: Role in Pathogenesis, Dietary Modulation, and Colitis-Associated Colon Cancer. Microorganisms. 2022;10(7):1371. doi: https://doi.org/10.3390/microorganisms10071371
17. Olivares M, Benítez-Páez A, de Palma G, et al. Increased prevalence of pathogenic bacteria in the gut microbiota of infants at risk of developing celiac disease: The PROFICEL study. Gut Microbes. 2018;9(6):551–558. doi: https://doi.org/10.1080/19490976.2018.1451276
18. Liu HN, Wu H, Chen YZ, et al. Altered molecular signature of intestinal microbiota in irritable bowel syndrome patients compared with healthy controls: A systematic review and meta-analysis. Dig Liver Dis. 2017;49(4):331–337. doi: https://doi.org/10.1016/j.dld.2017.01.142
19. Tuniyazi M, Li S, Hu X, et al. The Role of Early Life Microbiota Composition in the Development of Allergic Diseases. Microorganisms. 2022;10(6):1190. doi: https://doi.org/10.3390/microorganisms10061190
20. Heiss CN, Olofsson LE. Gut Microbiota-Dependent Modulation of Energy Metabolism. J Innate Immun. 2018;10(3):163–171. doi: https://doi.org/10.1159/000481519
21. Tuohy KM, Gougoulias C, Shen Q, et al. Studying the human gut microbiota in the trans-omics era: focus on metagenomics and metabonomics. Curr Pharm Des. 2009;15(13):1415–1427. doi: https://doi.org/10.2174/138161209788168182
22. Chafen JJ, Newberry SJ, Riedl MA, et al. Diagnosing and managing common food allergies: a systematic review. JAMA. 2010;303(18):1848–1856. doi: https://doi.org/10.1001/jama.2010.582
23. Turroni F, Milani C, Duranti S, et al. The infant gut microbiome as a microbial organ influencing host well-being. Ital J Pediatr. 2020; 46(1):16. doi: https://doi.org/10.1186/s13052-020-0781-0
24. Arrieta MC, Stiemsma LT, Amenyogbe N, et al. The intestinal microbiome in early life: health and disease. Front Immunol. 2014; 5:427. doi: https://doi.org/10.3389/fimmu.2014.00427
25. Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 2017;279(1):70–89. doi: https://doi.org/10.1111/imr.12567
26. Carr LE, Virmani MD, Rosa F, et al. Role of Human Milk Bioactives on Infants’ Gut and Immune Health. Front Immunol. 2021;12:604080. doi: https://doi.org/10.3389/fimmu.2021.604080
27. Belyaeva IA, Namazova-Baranova LS, Bombardirova EP, et al. Targeted Development of Infant Microbiota on Formula Feeding: Modern Options. Voprosy sovremennoi pediatrii — Current Pediatrics. 2021;20(6):484–491. (In Russ). doi: https://doi.org/10.15690/vsp.v20i6.2354]
28. Belyaeva IA, Turti TV, Bombardirova EP, et al. Strategies for Scientific and Practicall Search: is There Any Correlation Between the Development of the Gut-Brain Axis and the Sleep Characteristics in Infants? Voprosy sovremennoi pediatrii — Current Pediatrics. 2021;20(6):499–505. (In Russ). doi: https://doi.org/10.15690/vsp.v20i6.2356
29. Zhuang L, Chen H, Zhang S, et al. Intestinal Microbiota in Early Life and Its Implications on Childhood Health. Genomics Proteomics Bioinformatics. 2019;17(1):13–25. doi: https://doi.org/10.1016/j.gpb.2018.10.002
30. Oftedal OT. The evolution of milk secretion and its ancient origins. Animal. 2012;6(3):355–368. doi: https://doi.org/10.1017/S1751731111001935
31. Rosstat. Healthcare. Federal State Statistics Service. (In Russ). Доступно по: https://rosstat.gov.ru/folder/13721. Ссылка активна на 30.11.2022.
32. Belyaeva IA, Namazova-Baranova LS, Volodin NN, Petryaykina EE. Organization of Breastfeeding in Neonatal Intensive Care Units: Discussion Issues. Pediatricheskaya farmakologiya — Pediatric pharmacology. 2019;16(3):152–158. (In Russ). doi: https://doi.org/10.15690/pf.v16i3.2027
33. Benninga MA, Faure C, Hyman PE, et al. Childhood functional gastrointestinal disorders: neonate/toddler. Gastroen te rology. 2016;150:1443–1455.e2. doi: https://doi.org/10.1053/j.gastro.2016.02.016
34. Vandenplas Y, Abkari A, Bellaiche M, et al. Prevalence and health outcomes of functional gastrointestinal symptoms in infants from birth to 12 months of age. J Pediatr Gastroenterol Nutr. 2015;61(3): 531–537. doi: https://doi.org/10.1097/MPG.0000000000000949
35. Bellaiche M, Oozeer R, Gerardi-Temporel G, et al. Multiple functional gastrointestinal disorders are frequent in formula-fed infants and decrease their quality of life. Acta Paediatr. 2018;107(7): 1276–1282. doi: https://doi.org/10.1111/apa.14348
36. Infante Pina D, Badia Llach X, Arino‐Armengol B, Villegas IV. Prevalence and dietetic management of mild gastrointestinal disorders in milk‐fed infants. World J Gastroenterol. 2008;14(2): 248–254. doi: https://doi.org/10.3748/wjg.14.248
37. Programma optimizatsii vskarmlivaniya detei pervogo goda zhizni v Rossiiskoi Federatsii: Guidelines. Мoscow: National Medical Research Center for Children’s Health; 2019. 112 p. (In Russ).
38. Indrio F, Riezzo G, Raimondi F, et al. Microbiota Involvement in the gut-brain axis. J Pediatr Gastroenterol Nutr. 2013;57:S11–S15. doi: https://doi.org/10.1097/01.mpg.0000441927.20931.d6
39. Van Oudenhove L, Crowell MD, Drossman DA, et al. Biopsychosocial Aspects of Functional Gastrointestinal Disorders. Gastroenterology. 2016:150(6):1355–1367.e2. doi: https://doi.org/10.1053/j.gastro.2016.02.027
40. Shamir R, St James-Roberts I, Di Lorenzo C, et al. Infant crying, colic, and gastrointestinal discomfort in early childhood: a review of the evidence and most plausible mechanisms. J Pediatr Gastroenterol Nutr. 2013;57(Suppl 1):S1–S45. doi: https://doi.org/10.1097/MPG.0b013e3182a154ff
41. Getaneh G, Mebrat A, Wubie A, Kendie H. Review on Goat Milk Composition and its Nutritive Value. J Nutr Health Sci. 2016;3(4):401. doi: https://doi.org/10.15744/2393-9060.3.401
42. Prosser CG. Compositional and functional characteristics of goat milk and relevance as a base for infant formula. J Food Sci. 2021;86(2): 257–265. doi: https://doi.org/10.1111/1750-3841.15574
43. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Opinion of the Scientific Panel on Dietetic Products, Nutrition and Allergies on a request from the Commission relating to the evaluation of goats’ milk protein as a protein source for infant formulae and follow-on formulae. EFSA Journal. 2004;30:1–15. doi: https://doi.org/10.2903/j.efsa.2004.30
44. Kurth E, Kennedy HP, Spichiger E, et al. Crying babies, tired mothers: what do we know? A systematic review. Midwifery. 2011;27(2):187–194. doi: https://doi.org/10.1016/j.midw.2009.05.012
45. Ceballos LS, Morales ER, Advare GT, et al, Sampelayo MRS. Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. J Food Compost Anal. 2009;22(4):322–329. doi: https://doi.org/10.1016/j.jfca.2008.10.020
46. Donovan SM. Human Milk Proteins: Composition and Physiological Significance. Nestle Nutr Inst Workshop Ser. 2019; 90:93–101. doi: https://doi.org/10.1159/000490298
47. Park Y, Ramos M, Haenlein GFW. Physico-chemical characteristics of goat and sheep milk. Small Rumin Res. 2007;68(1-2):88–113. doi: https://doi.org/10.1016/j.smallrumres.2006.09.013
48. Inglingstad RA, Devold TG, Eriksen EK, et al. Comparison of the digestion of caseins and whey proteins in equine, bovine, caprine and human milks by human gastrointestinal enzymes. Dairy Sci Technol. 2010;90(5):549–563. doi: https://doi.org/10.1051/dst/2010018
49. Bevilacqua C, Martin P, Candalph C, et al. Goats’ milk of defective alpha(s1)-casein genotype decreases intestinal and systemic sensitization to beta-lactoglobulin in guinea pigs. J Dairy Res. 2001;68(2):217–227. doi: https://doi.org/10.1017/s0022029901004861
50. Almaas H, Cases AL, Devold TG, et al. In vitro digestion of bovine and caprine milk by human gastric and duodenal enzymes. Int Dairy J. 2006;16(9):961–968. doi: https://doi.org/10.1016/j.idairyj.2005.10.029
51. Handbook of milk of non-bovine mammals. Park YW, Haenlein GFW, Wendorff WL, eds. 2nd ed. John Wiley & Sons, Ltd.; 2017. doi: https://doi.org/10.1002/9781119110316.ch2.2
52. Gurova MM. Goat Milk Formula. To whom, why, how. Meditsinskiy sovet = Medical Council. 2022;16(1):128–133. (In Russ). doi: https://doi.org/10.21518/2079-701X-2022-16-1-128-133
53. Silanikove N, Leitner G, Merin U, Prosser CG. Recent advances in exploiting goat’s milk: Quality, safety and production aspects. Small Rumin Res. 2010;89(2-3):110–124. doi: https://doi.org/10.1016/J.SMALLRUMRES.2009.12.033
54. Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am. 2013;60(1):49–74. doi: https://doi.org/10.1016/j.pcl.2012.10.002
55. Sun Y, Tian S, Hussain M, et al. Profiling of phospholipid classes and molecular species in human milk, bovine milk, and goat milk by UHPLC-Q-TOF-MS. Food Res Int. 2022;161:111872. doi: https://doi.org/10.1016/j.foodres.2022.111872
56. Gallier S, Tolenaars L, Prosser C. Whole Goat Milk as a Source of Fat and Milk Fat Globule Membrane in Infant Formula. Nutrients. 2020;12(11):3486. doi: https://doi.org/10.3390/nu12113486
57. Chilliard Y, Ferlay A. Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties. Reprod Nutr Develop. 2004;44(5):467–492. doi: https://doi.org/10.1051/rnd:2004052
58. Lindquist S, Hernell O. Lipid digestion and absorption in early life: an update. Curr Opin Clin Nutr Metab Care. 2010;13(3): 314–320. doi: https://doi.org/10.1097/MCO.0b013e328337bbf0
59. Zou L, Pande G, Akoh CC. Infant Formula Fat Analogs and Human Milk Fat: New Focus on Infant Developmental Needs. Annu Rev Food Sci Technol. 2016;7:139–165. doi: https://doi.org/10.1146/annurev-food-041715-033120
60. Bronsky J, Campoy Ch, Embleton N, Fewtrell M. Palm Oil and Beta-palmitate in Infant Formula: A Position Paper by the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2019;68(5):742–760. doi: https://doi.org/10.1097/MPG.0000000000002307
61. Yaron S, Shachar D, Abramas L, et al. Effect of high β-palmitate content in infant formula on the intestinal microbiota of term infants. J Pediatr Gastroenterol Nutr. 2013;56(4):376–381. doi: https://doi.org/10.1097/MPG.0b013e31827e1ee2
62. Yao M, Lien E, Capeling MR, et al. Effects of term infant formulas containing high sn-2 palmitate with and without oligofructoseon stool composition, stool characteristics, and bifidogenicity. J Pediatr Gastroenterol Nutr. 2014;59(4):440–448. doi: https://doi.org/10.1097/MPG.0000000000000443
63. Bar-Yoseph F, Lifshitz Y, Cohen T, et al. SN2-Palmitate Improves Crying and Sleep in Infants Fed Formula with Prebiotics: A Double- Blind Randomized Clinical Trial. Clin Mother Child Health. 2017;14:2. doi: https://doi.org/10.4172/2090-7214.1000263
64. Heine RG, AlRefaee F, Bachina P, et al. Lactose intolerance and gastrointestinal cow’s milk allergy in infants and children – common misconceptions revisited. World Allergy Organ J. 2017;10(1):41. doi: https://doi.org/10.1186/s40413-017-0173-0
65. Gibson GR, Hutkins R, Sanders M, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491–502. doi: https://doi.org/10.1038/nrgastro.2017.75
66. Ruhaak LR, Lebrilla C. Analysis and role of oligosaccharides in milk. BMB Rep. 2012;45(8):442–451. doi: https://doi.org/10.5483/BMBRep.2012.45.8.161
67. Thurl S, Munzert M, Boehm G, et al. Systematic review of the concentrations of oligosaccharides in human milk. Nutr Rev. 2017;75(11):920–933. doi: https://doi.org/10.1093/nutrit/nux044
68. Thurl S, Henker J, Siegel M, et al. Detection of four human milk groups with respect to Lewis blood group dependent oligosaccharides. Glycoconj J. 1997;14(7):795–799. doi: https://doi.org/10.1023/a:1018529703106
69. Coppa GV, Gabrielli O, Zampini L, et al. Oligosaccharides in 4 different milk groups, Bifidobacteria, and Ruminococcus obeum. J Pediatr Gastroenterol Nutr. 2011;53(1):80–87. doi: https://doi.org/10.1097/MPG.0b013e3182073103
70. Morrow AL, Ruiz-Palacios GM, Altaye M, et al. Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. J Pediatr. 2004;145(3):297–303. doi: https://doi.org/10.1016/j.jpeds.2004.04.054
71. Perret S, Sabin C, Dumon C, et al. Structural basis for the interaction between human milk oligosaccharides and the bacterial lectin PA-IIL of Pseudomonas aeruginosa. Biochem J. 2005;389 (Pt 2):325–332. doi: https://doi.org/10.1042/BJ20050079
72. Quinn EM, Joshi L, Hickey RM. Symposium review: Dairy-derived oligosaccharides-Their influence on host-microbe interactions in the gastrointestinal tract of infants. J Dairy Sci. 2020;103(4): 3816–3827. doi: https://doi.org/10.3168/jds.2019-17645
73. Martinez-Ferez A, Rudloff S, Guadix A, et al. Goats’ milk as a natural source of lactose-derived oligosaccharides: Isolation by membrane technology. Int Dairy J. 2006;16(2):173–181. doi: https://doi.org/10.1016/j.idairyj.2005.02.003
74. Sousa YRF, Araújo DFS, Pulido JO, et al. Composition and isolation of goat cheese whey oligosaccharides by membrane technology. Int J Biol Macromol. 2019;139:57–62. doi: https://doi.org/10.1016/j.ijbiomac.2019.07.181
75. Claps S, Di Napoli MA, Sepe L, et al. Sialyloligosaccharides Content in Colostrum and Milk of Two Goat Breeds. Small Rumin Res. 2014;121(1):116–119. doi: https://doi.org/10.1016/j.smallrumres.2013.12.024
76. Claps S, Di Napoli MA, Caputo AR, et al. Factor Affecting the 3' Sialyllactose, 6' Sialyllactose and Disialyllactose Content in Caprine Colostrum and Milk: Breed and Parity. Small Rumin Res. 2016;134: 8–13. doi: https://doi.org/10.1016/j.smallrumres.2015.11.002
77. van Leeuwen SS, Te Poele EM, Chatziioannou AC, et al. Goat Milk Oligosaccharides: Their Diversity, Quantity, and Functional Properties in Comparison to Human Milk Oligosaccharides. J Agric Food Chem. 2020;68(47):13469–13485. doi: https://doi.org/10.1021/acs.jafc.0c03766
78. Oliveira DL, Wilbey RA, Grandison AS, et al. Separation of oligosaccharides from caprine milk whey, prior to prebiotic evaluation. Int Dairy J. 2012;24(2):102–106. doi: https://doi.org/10.1016/j.idairyj.2011.12.012
79. Urakami H, Saeki M,Watanabe Y, et al. Isolation and assessment of acidic and neutral oligosaccharides from goat milk and bovine colostrum for use as ingredients of infant formulae. Int Dairy J. 2018;83:1–9. doi: https://doi.org/10.1016/j.idairyj.2018.03.004
80. Chatziioannou AC, Benjamins E, Pellis L, et al. Extraction and Quantitative Analysis of Goat Milk Oligosaccharides: Composition, Variation, Associations, and 2'-FL Variability. J Agric Food Chem. 2021;69(28):7851–7862. doi: https://doi.org/10.1021/acs.jafc.1c00499
81. Zuurveld M, van Witzenburg NP, Garssen J, et al. Immunomodulation by Human Milk Oligosaccharides: The Potential Role in Prevention of Allergic Diseases. Front Immunol. 2020;11:801. doi: https://doi.org/10.3389/fimmu.2020.00801
82. Leong A, Liu Z, Almshawit H, et al. Oligosaccharides in goats’ milk-based infant formula and their prebiotic and anti-infection properties. Br J Nutr. 2019;122(4):441–449. doi: https://doi.org/10.1017/S000711451900134X
83. Hess JR, Greenberg NA. The role of nucleotides in the immune and gastrointestinal systems: potential clinical applications. Nutr Clin Pract. 2012;27(2):281–294. doi: https://doi.org/10.1177/0884533611434933
84. Sánchez CL, Cubero J, Sánchez J, et al. The possible role of human milk nucleotides as sleep inducers. Nutr Neurosci. 2009;12(1):2–8. doi: https://doi.org/10.1179/147683009X388922
85. Hodgkinson A, Wall C, Wang W, et al. Nucleotides: an updated review of their concentration in breast milk. Nutr Res. 2022;99: 13–24. doi: https://doi.org/10.1016/j.nutres.2021.09.004
86. Plakantara S, Michaelidou AM, Polychroniadou A, et al. Nucleotides and nucleosides in ovine and caprine milk during lactation. J Dairy Sci. 2010;93(6):2330–2337. doi: https://doi.org/10.3168/jds.2009-2836
87. Uauy R. Nonimmune system responses to dietary nucleotides. J Nutr. 1994;124(1 Suppl):157S–159S. doi: https://doi.org/10.1093/jn/124.suppl_1.157S
88. Yau KI, Huang CB, Chen W, et al. Effect of nucleotides on diarrhea and immune responses in healthy term infants in Taiwan. J Pediatr Gastroenterol Nutr. 2003;36(1):37–43. doi: https://doi.org/10.1097/00005176-200301000-00009
89. Lopez AI, Alferez MJM, Barrionuevo M, et al. influence of goat and cow milk on digestion and metabolic utilization of calcium and iron. J Physiol Biochem. 2000;56(3):201–208. doi: https://doi.org/10.1007/BF03179787
90. Basnet S, Schneider M, Gazi TA, et al. Fresh goat’s milk for infants: Myths and realities a review. Pediatrics. 2010;125(4): e973–e977. doi: https://doi.org/10.1542/peds.2009-1906
91. Juarez M, Ramos M. Physico-chemical characteristics of goat milk as distinct from those of cow’s milk. Int Dairy Fed Buffl. 1986;202:54–67.
92. Koletzko S, Niggemann B, Arato A, et al. Diagnostic Approach and Management of Cow’s-Milk Protein Allergy in Infants and Children: EPGHAN GI Committee Practical Gudelines. J Pediatr Gastroenterol Nutr. 2012;55(2):221–229. doi: https://doi.org/10.1097/MPG.0b013e31825c9482
93. Vandenplas Y, Dupont C, Eigenmann P, et al. A workshop report on the development of the Cow’s Milk-related Symptom Score awareness tool for young children. Acta Paediatrica. 2015; 104(4):334–339. doi: https://doi.org/10.1111/apa.12902
94. Meijer-Krommenhoek Y, van Lee L, Brouwer-Brolsma E, et al. Goat milk based infant formula improves gastro-intestinal discomfort in infants in a randomized controlled pilot study. Poster presented at Nutrition & Growth 2021. Available online: https://cdn.shopify.com/s/files/1/0014/8488/1984/files/AUSNUTRIA_Kabrita_HCP_CoMiSS_N_G_poster_online_versie.pdf. Accessed on November 30, 2022.
95. Infante DD, Prosser CG, Torno R. Constipated patients fed goat milk protein formula: a case series study. J Nutr Health Sci. 2018;5(2):203. doi: https://doi.org/10.15744/2393-9060.5.203
96. Wang J, Liu X., Ma H, et al. Growth comparison of infants fed with breast milk, goat or cow milk infant formula. Ausnutria MFGM poster. In: Ausnutria Nutrition Institute. Available online: https://ausnutrianutrition-institute.com/resources/growth-comparison-of-infants-fedwith-breast-milk-goat-or-cow-milk-infant-formula. Accessed on November 29, 2022.
97. Wang J, Liu X, Ma H, et al. The evolution of infants’ gut microbiota under different feeding regimes. Ausnutria MFGM poster. In: Ausnutria Nutrition Institute. Available online: https://ausnutria-nutrition-institute.com/resources/the-evolutionof-infants-gut-microbiota-under-different-feeding-regimes. Accessed on November 29, 2022.
98. Borovik TE, Semyonova NN, Lukoyanova OL, et al. Efficiency of Using the Adapted Goat’s Milk Formula in the Diet of Healthy Young Infants: a Multicenter Prospective Comparative Study. Voprosy sovremennoi pediatrii — Current Pediatrics. 2017;16(3):226–234. (In Russ). doi: https://doi.org/10.15690/vsp.v16i3.1733]
Review
For citations:
Belyaeva I.A., Bombardirova E.P., Turti T.V. The Choice of Product for Mixed or Formula Feeding of Infant: Beneficial Properties of Goat’s Milk Formula. Current Pediatrics. 2022;21(6):438-446. (In Russ.) https://doi.org/10.15690/vsp.v21i6.2469