Preview

Current Pediatrics

Advanced search

The Appearance and Establishment of Breastfeeding Amongst Mammals: From Echidna and Platypus to Human

https://doi.org/10.15690/vsp.v21i6.2492

Abstract

The paper provides review of the scientific literature dedicated to the evolutionary aspects of breastfeeding in the animal kingdom. Differences in breast milk composition amongst different mammals along with changes in breast milk composition during evolution provided. Special attention is paid to oligosaccharides — unique components of the breast milk of Homo sapiens.

About the Authors

Sergey E. Ukraintsev
Russian People’s Friendship University
Russian Federation

Moscow


Disclosure of interest:

The medical director of Nestle Russia.



Tatiana N. Samal
Belarusian State Medical University
Belarus

Minsk


Disclosure of interest:

Confirmed the absence of a reportable conflict of interests.



References

1. Linnaeus C. Tomus I. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata. Holmiae; Laurentii Salvii; 1758. 824 p.

2. Musser AM. Review of the monotreme fossil record and comparison of palaeontological and molecular data. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(4):927–942. doi: https://doi.org/10.1016/s1095-6433(03)00275-7

3. Blackburn DG. Evolutionary origins of the mammary gland. Mammal Rev. 1991; 21(2):81–98. doi: https://doi.org/10.1111/j.1365-2907.1991.tb00290.x

4. Stahlschmidt Z, DeNardo DF. Parental behavior in pythons is responsive to both the hydric and thermal dynamics of the nest. J Exp Biol. 2010;213(Pt 10):1691–1696. doi: https://doi.org/10.1242/jeb.041095

5. Fewtrell MS, Mohd Shukri NH, Wells JCK. ‘Optiising’ breatfeeding: what can we learn from evolutionary, comparative and anthropological aspects of lactation? BMC Medicine. 2020;18(1):4. doi: https://doi.org/10.1186/s12916-019-1473-8

6. Oftedal OT. The evolution of milk secretion and its ancient origins. Animal. 2012;6(3):355–368. doi: https://doi.org/10.1017/S1751731111001935

7. Oftedal OT. The mammary gland and its origin during synapsid evolution. J Mammary Gland Biol Neoplasia. 2002;7(3):225–252. doi: https://doi.org/10.1023/a:1022896515287

8. Iverson SJ, Oftedal OT, Bowen WD, et al. Prenatal and postnatal transfer of fatty acids from mother to pup in the hooded seal. J Comp Physiol B. 1995;165(1):1–12. doi: https://doi.org/10.1007/BF00264680

9. Nicholas KR. Asynchronous dual lactation in a marsupial, the tammar wallaby (Macropus eugenii). Biochem Biophys Res Commun. 1988;154(2):529–536. doi: https://doi.org/10.1016/0006-291x(88)90172-6

10. Getaneh G, Mebrat A, Wubie A, Kendie H. Review on Goat Milk Composition and Its Nutritive Value. J Nutr Health Sci. 2016;3(4): 401. doi: https://doi.org/10.15744/2393-9060.3.401

11. Czosnykowska-Łukacka M, Królak-Olejnik B, Orczyk-Pawiłowicz M. Breast Milk Macronutrient Components in Prolonged Lactation. Nutrients. 2018;10(12):1893. doi: https://doi.org/10.3390/nu10121893

12. Brands B, Demmelmair H, Koletzko B. How growth due to infant nutrition influences obesity and later disease risk. Acta Paediatr. 2014;103(6):578–585. doi: https://doi.org/10.1111/apa.12593

13. Liao Y, Weber D, Xu W, et al. Absolute Quantification of Human Milk Caseins and the Whey/Casein Ratio during the First Year of Lactation. J Proteome Res. 2017;16(11):4113–4121. doi: https://doi.org/10.1021/acs.jproteome.7b00486

14. Demers-Mathieu V, Nielsen SD, Underwood MA, et al. Changes in Proteases, Antiproteases, and Bioactive Proteins From Mother’s Breast Milk to the Premature Infant Stomach. J Pediatr Gastroenterol Nutr. 2018;66(2):318–324. doi: https://doi.org/10.1097/MPG.0000000000001719

15. McClean P, Weaver LT. Ontogeny of human pancreatic exocrine function. Arch Dis Child. 1993;68(1 Spec No):62–65. doi: https://doi.org/10.1136/adc.68.1_spec_no.62

16. Rousseaux A, Brosseau C, Le Gall S, et al. Human Milk Oligosaccharides: Their Effects on the Host and Their Potential as Therapeutic Agents. Front Immunol. 2021;12:680911. doi: https://doi.org/10.3389/fimmu.2021.680911

17. Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012;22(9):1147–1162. doi: https://doi.org/10.1093/glycob/cws074

18. Urashima T, Saito T, Nakamura T, et al. Oligosaccharides of milk and colostrum in non-human mammals. Glycoconj J. 2001;18(5): 357–371. doi: https://doi.org/10.1023/a:1014881913541

19. Urashima T, Fukuda K, Messer M. Evolution of milk oligo saccha rides and lactose: a hypothesis. Animal. 2012;6(3):369–374. doi: https://doi.org/10.1017/S1751731111001248

20. Sethi A, Wands AM, Mettlen M, et al. Cell type and receptor identity regulate cholera toxin subunit B (CTB) internalization. Interface Focus. 2019;9(2):20180076. doi: https://doi.org/10.1098/rsfs.2018.0076

21. Heggelund JE, Burschowsky D, Bjørnestad VA, et al. HighResolution Crystal Structures Elucidate the Molecular Basis of Cholera Blood Group Dependence. PLoS Pathog. 2016;12(4):e1005567. doi: https://doi.org/10.1371/journal.ppat.1005567

22. Messer M, Trifonoff E, Stern W, et al. Structure of a marsupial trisaccharide. Carbohydr Res. 1980;83(2):327–334. doi: https://doi.org/10.1016/s0008-6215(00)84545-0

23. Hurl S, Munzert M, Boehm G, et al. Systematic review of the concentrations of oligosaccharides in human milk. Nutr Rev. 2017; 75(11):920–933. doi: https://doi.org/10.1093/nutrit/nux044

24. Gupta P, Agrawal P, Hegde P. A review on xylooligosaccharides. International Research Journal of Pharmacy. 2012;3(8):71–74.

25. Khanvilkar S, Arya S. Fructooligosaccharides: applications and health benefits: A review. Agro Food Industry Hi-Tech. 2015;26(6):8–12.

26. Martins GN, Ureta MM, Tymczyszyn EE, et al. Technological Aspects of the Production of Fructo and Galacto-Oligosaccharides. Enzymatic Synthesis and Hydrolysis. Front Nutr. 2019;6:78. doi: https://doi.org/10.3389/fnut.2019.00078

27. De Cosmi V, Mazzocchi A, Agostoni C, Visioli F. Fructo oligosaccharides: from breast milk component to potential supplements. A systematic review. Adv Nutr. 2022;13(1):318–327. doi: https://doi.org/10.1093/advances/nmab102

28. Bode L, Donovan SM. Fructooligosachharides are not the same as fucosylated human milk oligosachharides. Adv Nutr. 2022;13(3): 972–973. doi: https://doi.org/10.1093/advances/nmac033

29. Barile D, Rastall RA. Human milk and related oligosaccharides as prebiotics. Curr Opin Biotechnol. 2013;24(2):214–219. doi: https://doi.org/10.1016/j.copbio.2013.01.008

30. Hunt KM, Foster JA, Forney LJ, et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS One. 2011;6(6):e21313. doi: https://doi.org/10.1371/journal.pone.0021313

31. Alsaweed A, Hartmann PE, Geddes DT, Kakulas F. MicroRNAs in Breastmilk and the Lactating Breast: Potential Immunoprotectors and Developmental Regulators for the Infant and the Mother. Int J Environ Res Public Health. 2015;12(11):13981–4020. doi: https://doi.org/10.3390/ijerph121113981

32. Hinde K. Lactational Programming of Infant Behavioral Phenotype. In: Building Babies. Developments in Primatology: Progress and Prospects, vol 37. Clancy K, Hinde K, Rutherford J, eds. New York, NY: Springer; 2013. pp.187–207. doi. https://doi.org/10.1007/978-1-4614-4060-4_9


Review

For citations:


Ukraintsev S.E., Samal T.N. The Appearance and Establishment of Breastfeeding Amongst Mammals: From Echidna and Platypus to Human. Current Pediatrics. 2022;21(6):462-466. (In Russ.) https://doi.org/10.15690/vsp.v21i6.2492

Views: 854


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)