Preview

Current Pediatrics

Advanced search

Clinical Phenotypes of Malnutrition in Young Children: Differential Nutritional Correction

https://doi.org/10.15690/vsp.v21i6.2495

Abstract

This review article summarizes current data on malnutrition etiology and pathogenesis in infants. Topical requirements for revealing this condition, its diagnosis and severity assessment via centile metrics are presented. The characteristics of the most common clinical phenotypes of postnatal growth insufficiency in infants (premature infants with different degree of maturation, including patients with bronchopulmonary dysplasia) are described. Differential approaches for malnutrition nutritional correction in these children are presented. The final section of the article describes special nutritional needs for children with congenital heart defects in terms of hemodynamic disorders nature and severity. Modern nutritional strategies for preparation of these patients to surgery and for their postoperative period are presented. The use of high-calorie/high-protein product for malnutrition correction in the most vulnerable patients with described in this review phenotypes is worth noticing.

About the Authors

Irina A. Belyaeva
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University; Morozovskaya Children’s City Hospital
Russian Federation

Moscow


Disclosure of interest:

Not declared.



Elena P. Bombardirova
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
Russian Federation

Moscow


Disclosure of interest:

Not declared.



Evgeniia A. Prihodko
Morozovskaya Children’s City Hospital
Russian Federation

Moscow


Disclosure of interest:

Not declared.



Andrey Yu. Kruglyakov
Morozovskaya Children’s City Hospital
Russian Federation

Moscow


Disclosure of interest:

Not declared.



Anna A. Mikheeva
Research Institute for Healthcare Organization and Medical Management
Russian Federation

Moscow


Disclosure of interest:

Not declared.



Arina R. Larina
Morozovskaya Children’s City Hospital
Russian Federation

Moscow


Disclosure of interest:

Not declared.



References

1. Rodríguez-Cano AM, Mier-Cabrera J, Muñoz-Manrique C, et al. Anthropometric and clinical correlates of fat mass in healthy term infants at 6 months of age. BMC Pediatr. 2019;19(1):60. doi: https://doi.org/10.1186/s12887-019-1430-x

2. Barstow C, Rerucha C. Evaluation of Short and Tall Stature in Children. Am Fam Physician. 2015;92(1):43–50.

3. Singhal A. Long-Term Adverse Effects of Early Growth Acceleration or Catch-Up Growth. Ann Nutr Metab. 2017;70(3):236–240. doi: https://doi.org/10.1159/000464302

4. de Onís M, Monteiro C, Akré J, Glugston G. The worldwide magnitude of protein-energy malnutrition: an overview from the WHO Global Database on Child Growth. Bull World Health Organ. 1993;71(6):703–712.

5. Black RE, Victora CG, Walker SP, et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet. 2013;382(9890):427–451. doi: https://doi.org/10.1016/S0140-6736(13)60937-X

6. Guerrant RL, DeBoer MD, Moore SR, et al. The impoverished gut — a triple burden of diarrhoea, stunting and chronic disease. Nat Rev Gastroenterol Hepatol. 2013;10(4):220–229. doi: https://doi.org/10.1038/nrgas tro.2012.239

7. Mayneris-Perxachs J, Swann JR. Metabolic phenotyping of malnutrition during the first 1000 days of life. Eur J Nutr. 2019; 58(3):909–930. doi: https://doi.org/10.1007/s00394-018-1679-0

8. Dipasquale V, Cucinotta U, Romano C. Acute Malnutrition in Children: Pathophysiology, Clinical Effects and Treatment. Nutrients. 2020;12(8):2413. doi: https://doi.org/10.3390/nu12082413

9. Patterson GT, Manthi D, Osuna F, et al. Environmental, Metabolic, and Inflammatory Factors Converge in the Pathogenesis of Moderate Acute Malnutrition in Children: An Observational Cohort Study. Am J Trop Med Hyg. 2021;104(5):1877–1888. doi: https://doi.org/10.4269/ajtmh.20-0963

10. World Health Organization: WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: head circumferencefor- age, arm circumference-for-age, triceps skinfold-for-age and subscapular skinfold-for-age: methods and development. 217. Geneva: World Health Organization; 2006.

11. World Health Organization: WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development. 336. Geneva: World Health Organization; 2006.

12. Caulfield LE, de Onis M, Blossner M, Black RE. Undernutrition as an underlying cause of child deaths associated with diarrhea, pneumonia, malaria, and measles. Am J Clin Nutr. 2004;80(1): 193–198. doi: https://doi.org/10.1093/ajcn/80.1.193

13. Bartz S, Mody A, Hornik C, et al. Severe acute malnutrition in childhood: hormonal and metabolic status at presentation, response to treatment, and predictors of mortality. J Clin Endocrinol Metab. 2014;99(6):2128–2137. doi: https://doi.org/10.1210/jc.2013-4018

14. Chisti MJ, Graham SM, Duke T, et al. Post-discharge mortality in children with severe malnutrition and pneumonia in Bangladesh. PLoS One. 2014;9(9):e107663. doi: https://doi.org/10.1371/journ al.pone.01076 63

15. Mayneris-Perxachs J, Lima AA, Guerrant RL, et al. Urinary N-methylnicotinamide and beta-aminoisobutyric acid predict catchup growth in undernourished Brazilian children. Sci Rep. 2016; 6:19780. doi: https://doi.org/10.1038/srep1 9780

16. Maes M, Leonard BE, Myint AM, et al. The new ‘5-HT’ hypothesis of depression: cell-mediated immune activation induces indo leamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(3):702–721. doi: https://doi.org/10.1016/j.pnpbp .2010.12.017

17. Semba RD, Shardell M, Sakr Ashour FA, et al. Child stunting is associated with low circulating essential amino acids. EBioMedicine. 2016;6:246–252. doi: https://doi.org/10.1016/j.ebiom .2016.02.030

18. Larson-Nath C, Goday P. Malnutrition in Children With Chronic Disease. Nutr Clin Pract. 2019;34(3):349–358. doi: https://doi.org/10.1002/ncp.10274

19. Kiely ME. Risks and benefits of vegan and vegetarian diets in children. Proc Nutr Soc. 2021;80(2):159–164. doi: https://doi.org/10.1017/S002966512100001X

20. Kostecka M, Kostecka-Jarecka J. Knowledge on the Complementary Feeding of Infants Older than Six Months among Mothers Following Vegetarian and Traditional Diets. Nutrients. 2021; 13(11):3973. doi: https://doi.org/10.3390/nu13113973

21. Blencowe H, Cousens S, Oestergaard MZ, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012;379(9832):2162–2172. doi: https://doi.org/10.1016/S0140-6736(12)60820-4

22. Ruys CA, van de Lagemaat M, Rotteveel J, et al. Improving longterm health outcomes of preterm infants: how to implement the findings of nutritional intervention studies into daily clinical practice. Eur J Pediatr. 2021;180(6):1665–1673. doi: https://doi.org/10.1007/s00431-021-03950-2

23. Spittle AJ, Cameron K, Doyle LW, Cheong JL. Motor impair ment trends in extremely preterm children: 1991–2005. Pediatrics. 2018;141(4):e20173410. doi: https://doi.org/10.1542/peds.2017-3410

24. Twilhaar ES, Wade RM, de Kieviet JF, et al. Cognitive outcomes of children born extremely or very preterm since the 1990s and associated risk factors: a meta-analysis and meta-regression. JAMA Pediatr. 2018;172(4):361–367. doi: https://doi.org/10.1001/jamapediatrics.2017.5323

25. Sipola-Leppanen M, Kajantie E. Should we assess cardiovascular risk in young adults born preterm? Curr Opin Lipidol. 2015;26(4): 282–287. doi: https://doi.org/10.1097/MOL.0000000000000190

26. Fenton TR, Cormack B, Goldberg D, et al. “Extrauterine growth restriction” and “postnatal growth failure” are misnomers for preterm infants. J Perinatol. 2020;40(5):704–714. doi: https://doi.org/10.1038/s41372-020-0658-5

27. Crump C. An overview of adult health outcomes after preterm birth. Early Hum Dev. 2020;150:105187. doi: https://doi.org/10.1016/j.earlhumdev.2020

28. Fenton TR, Kim JHA. Systematic review and meta-analysis to revise the fenton growth chart for preterm infants. BMC Pediatr. 2013;13:1–13. doi: https://doi.org/10.1186/1471-2431-13-59

29. Villar J, Cheikh Ismail L, Victora CG, et al. International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet. 2014;384(9946):857–868. doi: https://doi.org/10.1016/S0140-6736(14)60932-6

30. Fenton TR, Chan HT, Madhu A, et al. Preterm infant growth velocity calculations: a systematic review. Pediatrics. 2017;139(3):e20162045. doi: https://doi.org/10.1542/peds.2016-2045

31. González-García L, García-López E, Fernández-Colomer B, et al. Extrauterine Growth Restriction in Very Low Birth Weight Infants: Concordance Between Fenton 2013 and INTERGROWTH-21st Growth Charts. Front Pediatr. 2021;9:690788. doi: https://doi.org/10.3389/fped.2021.690788

32. Yang YN. Current concepts of very low birth weight infants with extra-uterine growth restriction. Pediatr Neonatol. 2022;63(1):3–4. doi: https://doi.org/10.1016/j.pedneo.2021.12.001

33. Fenton TR, Nasser R, Creighton D, et al. Weight, length, and head circumference at 36 weeks are not predictive of later cognitive impairment in very preterm infants. J Perinatol. 2021;41(3): 606–614. doi: https://doi.org/10.1038/s41372-020-00855-0

34. Tozzi MG, Moscuzza F, Michelucci A, et al. ExtraUterine Growth Restriction (EUGR) in Preterm Infants: Growth Patterns, Nutrition, and Epigenetic Markers. A Pilot Study. Front Pediatr. 2018;6:408. doi: https://doi.org/10.3389/fped.2018.00408

35. Maiocco G, Migliaretti G, Cresi F, et al. Evaluation of Extrauterine Head Growth From 14-21 days to Discharge With Longitudinal Intergrowth-21st Charts: A New Approach to Identify Very Preterm Infants at Risk of Long-Term Neurodevelopmental Impairment. Front Pediatr. 2020;8:572930. doi: https://doi.org/10.3389/fped.2020.572930

36. De Rose DU, Cota F, Gallini F, et al. Extra-uterine growth restriction in preterm infants: neurodevelopmental outcomes according to different definitions. Eur J Paediatr Neurol. 2021;33:135–145. doi: https://doi.org/10.1016/j.ejpn.2021.06.004

37. Figueras-Aloy J, Palet-Trujols C, Matas-Barceló I, et al. Extrauterine growth restriction in very preterm infant: etiology, diagnosis, and 2-year follow-up. Eur J Pediatr. 2020;179(9):1469–79. doi: https://doi.org/10.1007/s00431-020-03628-1

38. Ehrenkranz RA, Dusick AM, Vohr BR, et al. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics. 2006;117(4): 1253–1261. doi: https://doi.org/10.1542/peds.2005-1368

39. Greenbury SF, Angelini ED, Ougham K, et al. Birthweight and patterns of postnatal weight gain in very and extremely preterm babies in England and Wales, 2008-19: a cohort study. Lancet Child Adolesc Health. 2021;5(10):719–728. doi: https://doi.org/10.1016/S2352-4642(21)00232-7

40. Singh AS, Mulder C, Twisk JW, et al. Tracking of childhood overweight into adulthood: a systematic review of the literature. Obes Rev. 2008;9(5):474–488. doi: https://doi.org/10.1111/j.1467-789X.2008.00475.x

41. Kerkhof GF, Willemsen RH, Leunissen RW, et al. Health profile of young adults born preterm: negative effects of rapid weight gain in early life. J Clin Endocrinol Metab. 2012;97(12):4498–4506. doi: https://doi.org/10.1210/jc.2012-1716

42. Schneider N, Garcia-Rodenas CL. Early nutritional interventions for brain and cognitive development in preterm infants: a review of the literature. Nutrients. 2017;9(3):187. doi: https://doi.org/10.3390/nu9030187

43. Hay WW Jr. Strategies for feeding the preterm infant. Neonatology. 2008;94(4):245–254. doi: https://doi.org/10.1159/000151643

44. Agostoni C, Buonocore G, Carnielli VP, et al. Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2010;50(1):85–91. doi: https://doi.org/10.1097/MPG.0b013e3181adaee0

45. Lapillonne A, O’Connor DL, Wang D, Rigo J. Nutritional recommen dations for the late-preterm infant and the preterm infant after hospital discharge. J Pediatr. 2013;162(3 Suppl):S90–S100. doi: https://doi.org/10.1016/j.jpeds.2012.11.058

46. Senterre T, Rigo J. Optimizing early nutritional support based on recent recommendations in VLBW infants and postnatal growth restriction. J Pediatr Gastroenterol Nutr. 2011;53(5):536–542. doi: https://doi.org/10.1097/MPG.0b013e31822a009d

47. Safronova LN, Fedorova LA. Nedonoshennyi rebenok: Book of reference. Moscow: Status Praesens; 2020. 312 p. (In Russ).

48. Fenton TR, Al-Wassia H, Premji SS, Sauve RS. Higher versus lower protein intake in formula-fed low birth weight infants. Cochrane Database Syst Rev. 2020;6(6):CD003959. doi: https://doi.org/10.1002/14651858.CD003959.pub4

49. Olsen IE, Harris CL, Lawson ML, Berseth CL. Higher protein intake improves length, not weight, z scores in preterm infants. J Pediatr Gastroenterol Nutr. 2014;58(4):409–416. doi: https://doi.org/10.1097/MPG.0000000000000237

50. Atchley CB, Cloud A, Thompson D, et al. Enhanced protein diet for preterm infants: a prospective, randomized, double-blind, controlled trial. J Pediatr Gastroenterol Nutr. 2019;69(2):218–223. doi: https://doi.org/10.1097/MPG.0000000000002376

51. Hay WW Jr, Brown LD, Denne SC. Energy requirements, proteinenergy metabolism and balance, and carbohydrates in preterm infants. World Rev Nutr Diet. 2014;110:64–81. doi: https://doi.org/10.1159/000358459

52. Amissah EA, Brown J, Harding JE. Protein supplementation of human milk for promoting growth in preterm infants. Cochrane Database Syst Rev. 2020;9(9):Cd000433. doi: https://doi.org/10.1002/14651858.CD000433.pub3

53. Teller IC, Embleton ND, Griffin IJ, van Elburg RM. Post-discharge formula feeding in preterm infants: a systematic review mapping evidence about the role of macronutrient enrichment. Clin Nutr. 2016;35(4):791–801. doi: https://doi.org/10.1016/j.clnu.2015.08.006

54. Young L, Embleton ND, McGuire W. Nutrient-enriched formula versus standard formula for preterm infants following hospital discharge. Cochrane Database Syst Rev. 2016;12(12):CD004696. doi: https://doi.org/10.1002/14651858.CD004696.pub5

55. Amesz EM, Schaafsma A, Cranendonk A, Lafeber HN. Opti mal growth and lower fat mass in preterm infants fed a protein-enriched postdischarge formula. J Pediatr Gastroenterol Nutr. 2010;50(2):200–207. doi: https://doi.org/10.1097/MPG.0b013e3181a8150d

56. Ruys CA, van de Lagemaat M, Finken MJ, Lafeber HN. Follow-up of a randomized trial on postdischarge nutrition in preterm-born children at age 8 y. Am J Clin Nutr. 2017;106(2):549–558. doi: https://doi.org/10.3945/ajcn.116.145375

57. Ruys CA, Broring T, van Schie PEM, et al. Neurodevelopment of children born very preterm and/or with a very low birth weight: 8-Year follow-up of a nutritional RCT. Clinical Nutrition ESPEN. 2019;30: 190–198. doi: https://doi.org/10.1016/j.clnesp.2018.12.083

58. Cooke RJ, Embleton ND, Griffin IJ, et al. Feeding preterm infants after hospital discharge: growth and development at 18 months of age. Pediatr Res. 2001;49(5):719–722. doi: https://doi.org/10.1203/00006450-200105000-00018

59. Villar J, Giuliani F, Barros F, et al. Monitoring the postnatal growth of preterm infants: a paradigm change. Pediatrics. 2018;141(2):e20172467. doi: https://doi.org/10.1542/peds.2017-2467

60. Karnati S, Kollikonda S, Abu-Shaweesh J. Late preterm in fants — Changing trends and continuing challenges. Int J Pediatr Adolesc Med. 2020;7(1):36–44. doi: https://doi.org/10.1016/j.ijpam.2020.02.006

61. Quan MY, Li ZH, Wang DH, et al. Multi-center Study of Enteral Feeding Practices in Hospitalized Late Preterm Infants in China. Biomed Environ Sci. 2018;31(7):489–498. doi: https://doi.org/10.3967/bes2018.066

62. Santos IS, Matijasevich A, Domingues MR, et al. Late preterm birth is a risk factor for growth faltering in early childhood: a cohort study. BMC Pediatr. 2009;9:71. doi: https://doi.org/10.1186/1471-2431-9-71

63. Приходько Е.А., Беляева И.А., Кругляков А.Ю. и др. Факторы, ассоциированные с исключительно грудным вскармливанием поздних недоношенных детей в неонатальном стационаре: одномоментное исследование // Вопросы современной педиатрии. — 2022. — Т. 21. — № 1. — С. 29–35. — doi: https://doi.org/10.15690/vsp.v21i1.2384

64. Prikhodko EA, Belyaeva IA, Kruglyakov AYu, et al. Factors Associated with Exclusive Breastfeeding of Late Preterm Infants in Neonatal Hospital: Cross-Sectional Study. Voprosy sovremennoi pediatrii — Current Pediatrics. 2022;21(1):29–35. (In Russ). doi: https://doi.org/10.15690/vsp.v21i1.2384]

65. Zhang L, Li Y, Liang S, et al. Postnatal length and weight growth velocities according to Fenton reference and their associated perinatal factors in healthy late preterm infants during birth to termcorrected age: an observational study. Ital J Pediatr. 2019;45(1):1. doi: https://doi.org/10.1186/s13052-018-0596-4

66. Lapillonne A, Bronsky J, Campoy C, et al. Feeding the late and moderately preterm infant: a position paper of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2019;69(2):259–270. doi: https://doi.org/10.1097/MPG.0000000000002397

67. Johnson MJ, King C, Boddy B, et al. The nutritional needs of moderate-late preterm infants. Br J Hosp Med (Lond). 2022;83(4):1–9. doi: https://doi.org/10.12968/hmed.2022.0148

68. Namazova-Baranova LS, Turti TV, Lukoyanova OL, et al. Clinical Nutrition Involving a Specialized Protein- and Calorie-Rich Pediatric Milk Product for Enteral Feeding of Infants with Protein-Calorie Deficiency. Pediatricheskaya farmakologiya — Pediatric pharmacology. 2016;13(1):27–32. (In Russ). doi: https://doi.org/10.15690/pf.v13i1.1511

69. Bancalari E, Jain D. Bronchopulmonary Dysplasia: 50 Years after the Original Description. Neonatology. 2019;115(4):384–391. doi: https://doi.org/10.1159/000497422

70. Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Cell Mol Physiol. 2019;317(6):L832–L887. doi: https://doi.org/10.1152/ajplung.00369.2019

71. Poindexter BB, Martin CR. Impact of Nutrition on Bronchopulmonary Dysplasia. Clin Perinatol. 2015;42(4):797–806. doi: https://doi.org/10.1016/j.clp.2015.08.007

72. Milanesi BG, Lima PA, Villela LD, et al. Assessment of early nutritional intake in preterm infants with bronchopulmonary dys plasia: Eur J Pediatr. 2021;180(5):1423–1430. doi: https://doi.org/10.1007/s00431-020-03912-0

73. Al-Jebawi Y, Agarwal N, Wargo SG, et al. Low caloric intake and high fluid intake during the first week of life are associated with the severity of bronchopulmonary dysplasia in extremely low birth weight infants. J Neonatal Perinatal Med. 2020;13(2):207–214. doi: https://doi.org/10.3233/NPM-190267

74. Rocha G, Guimarães H, Pereira-da-Silva L. The Role of Nutrition in the Prevention and Management of Bronchopulmonary Dysplasia: A Literature Review and Clinical Approach. Int J Environ Res Public Health. 2021;18(12):6245. doi: https://doi.org/10.3390/ijerph18126245

75. Zhang R, Lin XZ, Chang YM, et al. Nutritional Committee of Neonatology Branch of Chinese Medical Doctor Association; Editorial Committee of Chinese Journal of Contemporary Pediatrics. Expert consensus on nutritional management of preterm infants with bronchopulmonary dysplasia. Chin J Contemp Paediatr. 2020;22(8):805–814. doi: https://doi.org/10.7499/j.issn.1008-8830.2005080

76. Guo MMH, Chung CH, Chen FS, et al. Severe Bronchopulmonary Dysplasia is Associated with Higher Fluid Intake in Very Low-Birth- Weight Infants: A Retrospective Study. Am J Perinatol. 2014;30: 155–162. doi: https://doi.org/10.1055/s-0034-1376393

77. Gianni ML, Roggero P, Colnaghi MR, et al. The role of nutrition in promoting growth in pre-term infants with bronchopulmonary dysplasia: A prospective non-randomised interventional cohort study. BMC Pediatr. 2014;14:235. doi: https://doi.org/10.1186/1471-2431-14-235

78. Kashyap S, Towers HM, Sahni R, et al. Effects of quality of energy on substrate oxidation in enterally fed, low-birth-weight infants. Am J Clin Nutr. 2001;74(3):374–380. doi: https://doi.org/10.1093/ajcn/74.3.374

79. Fenton TR, Anderson D, Groh-Wargo S, et al. An Attempt to Standardize the Calculation of Growth Velocity of Preterm Infants — Evaluation of Practical Bedside Methods. J Pediatr. 2018;196: 77–83. doi: https://doi.org/10.1016/j.jpeds.2017.10.005

80. Manley BJ, Makrides M, Collins CT, et al. For the DINO Steering Committee High-Dose Docosahexaenoic Acid Supplementation of Preterm Infants: Respiratory and Allergy Outcomes. Am Acad Pediatr. 2011;128(1):e71–e77. doi: https://doi.org/10.1542/peds.2010-2405

81. Wang Q, Zhou B, Cui Q, Chen C. Omega-3 Long-chain Polyunsaturated Fatty Acids for Bronchopulmonary Dysplasia: A Metaanalysis. J Pediatr. 2019;144(1):e20190181. doi: https://doi.org/10.1542/peds.2019-0181

82. Tanaka K, Tanaka S, Shah N, et al. Docosahexaenoic acid and bronchopulmonary dysplasia in preterm infants: A systematic review and meta-analysis. J Matern Neonatal Med. 2022;35(9):1730–1738. doi: https://doi.org/10.1080/14767058.2020.1769590

83. Mank E, Naninck EFG, Limpens J, et al. Enteral Bioactive Factor Supplementation in Preterm Infants: A Systematic Review. Nutrients. 2020;12(10):2916. doi: https://doi.org/10.3390/nu12102916

84. Vázquez-Gomis R, Bosch-Gimenez V, Juste-Ruiz M, et al. Zinc concentration in preterm newborns at term age, a prospective observational study. BMJ Paediatr Open. 2019;3(1):e000527. doi: https://doi.org/10.1136/bmjpo-2019-000527

85. Dani C, Poggi C. Nutrition and bronchopulmonary dysplasia. J Matern Neonatal Med. 2012;25(Suppl 3):37–40. doi: https://doi.org/10.3109/14767058.2012.712314

86. Denne SC. Energy Expenditure in Infants with Pulmonary Insufficiency: Is There Evidence for Increased Energy Needs? J Nutr. 2001;131(3):935S–937S. doi: https://doi.org/10.1093/jn/131.3.935S

87. White AM, Liu P, Yee K, et al. Determinants of Severe Metabolic Bone Disease in Very Low-Birth-Weight Infants with Severe Bronchopulmonary Dysplasia Admitted to a Tertiary Referral Center. Am J Perinatol. 2015;33(1):107–113. doi: https://doi.org/10.1055/s-0035-1560043

88. Park JS, Jeong SA, Cho JY, et al. Risk Factors and Effects of Severe Late-Onset Hyponatremia on Long-Term Growth of Prematurely Born Infants. Pediatr Gastroenterol Hepatol Nutr. 2020;23(5):472–483. doi: https://doi.org/10.5223/pghn.2020.23.5.472

89. Arslanoglu S, Boquien CY, King C, et al. Fortification of Human Milk for Preterm Infants: Update and Recommendations of the European Milk Bank Association (EMBA) Working Group on Human Milk Fortification. Front Pediatr. 2019;7:76. doi: https://doi.org/10.3389/fped.2019.00076

90. Villamor-Martínez E, Pierro M, Cavallaro G, et al. Donor Human Milk Protects against Bronchopulmonary Dysplasia: A Systematic Review and Meta-Analysis. Nutrients. 2018;10(2):238. doi: https://doi.org/10.3390/nu10020238

91. Arslanoglu S, Moro GE, Ziegler EE. Adjustable fortification of human milk fed to preterm infants: Does it make a difference? J Perinatol. 2006;26(10):614–621. doi: https://doi.org/10.1038/sj.jp.7211571

92. McLeod G, Sherriff J, Hartmann PE, et al. Comparing different methods of human breast milk fortification using measured v. assumed macronutrient composition to target reference growth: A randomised controlled trial. Br J Nutr. 2015;115(3):431–439. doi: https://doi.org/10.1017/S0007114515004614

93. Bott L, Béghin L, Devos P, et al. Nutritional Status at 2 Years in Former Infants with Bronchopulmonary Dysplasia Influen - ces Nutrition and Pulmonary Outcomes During Childhood. Pediatr Res. 2006;60(3):340–344. doi: https://doi.org/10.1203/01.pdr.0000232793.90186.ca

94. Brunton JA, Saigal S, Atkinson SA. Growth and body composition in infants with bronchopulmonary dysplasia up to 3 months corrected age: A randomized trial of a high-energy nutrient-enriched formula fed after hospital discharge. J Pediatr. 1998;133(3):340–345. doi: https://doi.org/10.1016/s0022-3476(98)70266-5

95. Pereira-Da-Silva L, Dias MPG, Virella D, et al. Osmolality of pre term formulas supplemented with nonprotein energy supplements. Eur J Clin Nutr. 2007;62:274–278. doi: https://doi.org/10.1038/sj.ejcn.1602736

96. Konnikova Y, Zaman MM, Makda M, et al. Late Enteral Feedings Are Associated with Intestinal Inflammation and Adverse Neonatal Outcomes. PLoS One. 2015;10(7):e0132924. doi: https://doi.org/10.1371/journal.pone.0132924

97. Moltu SJ, Bronsky J, Embleton N, et al. ESPGHAN Committee on Nutrition. Nutritional management of the critically ill neonate: A Position Paper of the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2021;73(2):274–289. doi: https://doi.org/10.1097/MPG.0000000000003076

98. Malcolm WF, Smith PB, Mears S, et al. Transpyloric tube feeding in very low birthweight infants with suspected gastroesophageal reflux: Impact on apnea and bradycardia. J Perinatol. 2009;29(5): 372–375. doi: https://doi.org/10.1038/jp.2008.234

99. Guimarães H, Rocha G, Guedes MB, et al. Nutrition of preterm infants with bronchopulmonary dysplasia after hospital discharge — Part I. J Pediatr Neonatal Individ Med. 2014;3(1):e030116. doi: https://doi.org/10.7363/030116

100. Guimarães H, Rocha G, Guedes MB, et al. Nutrition of preterm infants with bronchopulmonary dysplasia after hospital discharge — Part II. J Pediatr Neonatal Individ Med. 2014;3:e030117. doi: https://doi.org/10.7363/030117

101. Villa E, Barachetti R, Barbarini M. Nutritional management of preterm newborn after hospital discharge: Energy and nutrients. Pediatr Medica Chir. 2017;39(4):170. doi: https://doi.org/10.4081/pmc.2017.170

102. Pereira-da-Silva L, Virella D, Frutuoso S, et al. Recommendation of charts and reference values for assessing growth of preterm infants: Update by the Portuguese Neonatal Society. Port J Pediatr. 2020;51:73–78. doi: https://doi.org/10.25754/pjp.2020.18888

103. Pereira-Da-Silva L, Virella D, Fusch C. Nutritional Assessment in Preterm Infants: A Practical Approach in the NICU. Nutrients. 2019;11(9):1999. doi: https://doi.org/10.3390/nu11091999

104. Johnson MJ, Wiskin AE, Pearson F, et al. How to use: Nutritional assessment in neonates. Arch Dis Child Educ Pract Ed. 2014;100(3):147–154. doi: https://doi.org/10.1136/archdischild-2014-306448

105. Visser F, Sprij AJ, Brus F. The validity of biochemical markers in metabolic bone disease in preterm infants: A systematic review. Acta Paediatr. 2012;101(6):562–568. doi: https://doi.org/10.1111/j.1651-2227.2012.02626.x

106. Belyaeva IА, Bombardirova EP, Turti TV, Prikhodko EA. Special Medical Food in Premature Child with Postnatal Malnutrition: Clinical Case. Voprosy sovremennoi pediatrii — Current Pediatrics. 2021;20(6):521–529. (In Russ). doi: https://doi.org/10.15690/vsp.v20i6.2359

107. Marino LV, Johnson MJ, Hall NJ, et al. The development of a consensus-based nutritional pathway for infants with CHD before surgery using a modified Delphi process. Cardiol Young, 2018;28(7):938–948. doi: https://doi.org/10.1017/S1047951118000549

108. Marino LV, Johnson MJ, Davies NJ, et al. Improving growth of infants with congenital heart disease using a consensus-based nutritional pathway. Clin Nutr. 2020;39(8):2455–2462. doi: https://doi.org/10.1016/j.clnu.2019.10.031

109. Argent AC, Balachandran R, Vaidyanathan B, et al. Management of undernutrition and failure to thrive in children with congenital heart disease in low- and middle-income countries. Cardiol Young. 2017;27(S6):S22–S30. doi: https://doi.org/10.1017/S104795111700258X

110. Schwalbe-Terilli CR, Hartman DH, Nagle ML, et al. Enteral feeding and caloric intake in neonates after cardiac surgery. Am J Crit Care. 2009;18(1):52–57. doi: https://doi.org/10.4037/ajcc2009405

111. Hehir DA, Cooper DS, Walters EM, Ghanayem NS. Feeding, growth, nutrition, and optimal interstage surveillance for infants with hypoplastic left heart syndrome. Cardiol Young. 2011;21(Suppl 2): 59–64. doi: https://doi.org/10.1017/S1047951111001600

112. Norman M, Hakansson S, Kusuda S, et al. Neonatal outcomes in very preterm infants with severe congenital heart defects: An international cohort study. J Am Heart Assoc. 2020;9(5):e015369. doi: https://doi.org/10.1161/JAHA.119.015369

113. Salvatori G, De Rose DU, Massolo AC, et al. Current Strategies to Optimize Nutrition and Growth in Newborns and Infants with Congenital Heart Disease: A Narrative Review. J Clin Med. 2022;11(7):1841. doi: https://doi.org/10.3390/jcm11071841.

114. Karpen HE. Nutrition in the Cardiac Newborns. Evidence- based Nutrition Guidelines for Cardiac Newborns. Clin Perinatol. 2016;43(1):131–145. doi: https://doi.org/10.1016/j.clp.2015.11.009

115. Steltzer M, Rudd N, Pick B. Nutrition care for newborns with congenital heart disease. Clin Perinatol. 2005;32(4):1017–1030, xi. doi: https://doi.org/10.1016/j.clp.2005.09.010

116. Wong JJM, Cheifetz IM, Ong C, et al. Nutrition Support for Children Undergoing Congenital Heart Surgeries: A Narrative Review. World J Pediatr Congenit Heart Surg. 2015;6(3):443–454. doi: https://doi.org/10.1177/2150135115576929

117. Jones CE, Desai H, Fogel JL, et al. Disruptions in the development of feeding for infants with congenital heart disease. Cardiol Young. 2021;31(4):589–596. doi: https://doi.org/10.1017/S1047951120004382

118. Cognata A, Kataria-Hale J, Griffiths P, et al. Human Milk Use in the Preoperative Period Is Associated with a Lower Risk for Necrotizing Enterocolitis in Neonates with Complex Congenital Heart Disease. J Pediatr. 2019;215:11–16.e2. doi: https://doi.org/10.1016/j.jpeds.2019.08.009

119. Martini S, Aceti A, Galletti S, et al. To feed or not to feed: A critical overview of enteral eeding management and gastrointestinal complications in preterm neonates with a patent ductus arteriosus. Nutrients. 2020;12(1):83. doi: https://doi.org/10.3390/nu12010083

120. Malhotra A, Veldman A, Menahem S. Does milk fortification increase the risk of necrotising enterocolitis in preterm infants with congenital heart disease? Cardiol Young. 2013;23(30:450–453. doi: https://doi.org/10.1017/S1047951112000947

121. Tume LN, Balmaks R, Da Cruz E, et al. Enteral Feeding Practices in Infants with Congenital Heart Disease Across European PICUs: A European Society of Pediatric and Neonatal Intensive Care Survey. Pediatr Crit Care Med. 2018;19(2):137–144. doi: https://doi.org/10.1097/PCC.0000000000001412

122. Furlong-Dillard J, Neary A, Marietta J, et al. Evaluating the Impact of a Feeding Protocol in Neonates before and after Biventricular Cardiac Surgery. Pediatr Qual Saf. 2018;3(3):e080. doi: https://doi.org/10.1097/pq9.0000000000000080

123. Newcombe J, Fry-Bowers E. A Post-operative Feeding Protocol to Improve Outcomes for Neonates with Critical Congenital Heart Disease. J Pediatr Nurs. 2017;35:139–143. doi: https://doi.org/10.1016/j.pedn.2016.12.010

124. O’Neal Maynord P, Johnson M, Xu M, et al. A Multi-Interventional Nutrition Program for Newborns with Congenital Heart Disease. J Pediatr. 2021;228:66–73.e2. https://doi.org/doi: 10.1016/j.jpeds.2020.08.039

125. Hansson L, Lind T, Wiklund U, et al. Fluid restriction negatively affects energy intake and growth in very low birthweight infants with haemodynamically significant patent ductus arteriosus. Acta Paediatr. 2019;108(11):1985–1992. doi: https://doi.org/10.1111/apa.14815

126. McCammond AN, Axelrod DM, Bailly DK, et al. Pediatric cardiac intensive care society 2014 consensus statement: Pharmacotherapies in cardiac critical care fluid management. Pediatr Crit Care Med. 2016;17(3 Suppl 1):S35–S48. doi: https://doi.org/10.1097/PCC.0000000000000633

127. Hanot J, Dingankar AR, Sivarajan VB, et al. Fluid management practices after surgery for congenital heart disease: A worldwide survey. Pediatr Crit Care Med. 2019;20(4):357–364. doi: https://doi.org/10.1097/PCC.0000000000001818

128. Zhang J, Cui YQ, Luo Y, et al. Assessment of Energy and Protein Requirements in Relation to Nitrogen Kinetics, Nutrition, and Clinical Outcomes in Infants Receiving Early Enteral Nutrition Following Cardiopulmonary Bypass. JPEN J Parenter Enter Nutr. 2021;45(3):553–566. doi: https://doi.org/10.1002/jpen.1863

129. Mehta NM, Skillman HE, Irving SY, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Pediatric Critically Ill Patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. Pediatr Crit Care Med. 2017;18(7):675–715. doi: https://doi.org/10.1097/PCC.0000000000001134

130. Terrin G, De Nardo MC, Boscarino G, et al. Early Protein Intake Influences Neonatal Brain Measurements in Preterms: An Observational Study. Front Neurol. 2020;11:885. doi: https://doi.org/10.3389/fneur.2020.00885

131. Gu Y, Hu Y, Zhang H, et al. Implementation of an Evidence- Based Guideline of Enteral Nutrition for Infants with Congenital Heart Disease: A Controlled Before-And-After Study. Pediatr Crit Care Med. 2020;21(6):e369–e377. doi: https://doi.org/10.1097/PCC.0000000000002296

132. Singal A, Sahu MK, Trilok Kumar G, Kumar A. Effect of energyand/ or protein-dense enteral feeding on postoperative outcomes of infant surgical patients with congenital cardiac disease: A systematic review and meta-analysis. Nutr Clin Pract. 2022;37(3):555–566. doi: https://doi.org/10.1002/ncp.10799

133. Zhang J, Cui YQ, Ma Md ZM, et al. Energy and Protein Requirements in Children Undergoing Cardiopulmonary Bypass Surgery: Current Problems and Future Direction. JPEN J Parenter Enter Nutr. 2019;43(1):54–62. doi: https://doi.org/10.1002/jpen.1314

134. Ni P, Chen X, Zhang Y, et al. High-Energy Enteral Nutrition in Infants After Complex Congenital Heart Surgery. Front Pediatr. 2022;10:869415. doi: https://doi.org/10.3389/fped.2022.869415


Review

For citations:


Belyaeva I.A., Bombardirova E.P., Prihodko E.A., Kruglyakov A.Yu., Mikheeva A.A., Larina A.R. Clinical Phenotypes of Malnutrition in Young Children: Differential Nutritional Correction. Current Pediatrics. 2022;21(6):467-478. (In Russ.) https://doi.org/10.15690/vsp.v21i6.2495

Views: 586


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)