Preview

Current Pediatrics

Advanced search

Modern Treatment Options for Epidermal Dysfunction at Atopic Dermatitis

https://doi.org/10.15690/vsp.v22i5.2619

Abstract

Atopic dermatitis (AD) is a chronic inflammatory skin disease. Its crucial component of pathogenesis is malfunction of the epidermal barrier. Filaggrin protein and associated mutations in the filaggrin gene play one of the key roles in this problem. Nowadays new topical products (emollients) has been created and implemented into practice with the aim of more personalized approach and increased therapy efficacy in patients with AD. Such drugs would allow us to restore epidermal barrier function and to achieve elimination of disease symptoms.

About the Authors

Eduard T. Ambarchyan
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
Russian Federation

Moscow


Disclosure of interest:

Eduard T. Ambarchyan — receiving research grants from pharmaceutical companies Eli Lilly, Novartis, AbbVie, Pfizer, Amryt Pharma plc, scientific consultant of Pierre Fabre, Janssen, Dr. Reddy’s Laboratories Ltd. 



Anastasiya D. Kuzminova
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
Russian Federation

Moscow


Disclosure of interest:

The other contributors confirmed the absence of a reportable conflict of interests



Vladislav V. Ivanchikov
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
Russian Federation

Moscow


Disclosure of interest:

The other contributors confirmed the absence of a reportable conflict of interests



References

1. Rauer L, Reiger M, Bhattacharyya M, et al. Skin microbiome and its association with host cofactors in determining atopic dermatitis severity. J Eur Acad Dermatol Venereol. 2023;37(4):772–782. doi: https://doi.org/10.1111/jdv.18776

2. Boguniewicz M, Alexis AF, Beck LA, et al. Expert Perspectives on Management of Moderate-to-Severe Atopic Dermatitis: A Multidisciplinary Consensus Addressing Current and Emerging Therapies. J Allergy Clin Immunol Pract. 2017;5(6):1519–1531. doi: https://doi.org/10.1016/j.jaip.2017.08.005

3. Taylor K, Swan DJ, Affleck A, et al. Translational Research Network in Dermatology and the U.K. Dermatology Clinical Trials Network. Treatment of moderate-to-severe atopic eczema in adults within the U.K.: results of a national survey of dermatologists. Br J Dermatol. 2017;176(6):1617–1623. doi: https://doi.org/10.1111/bjd.15235

4. Silverberg JI, Barbarot S, Gadkari A, et al. Atopic dermatitis in the pediatric population: A cross-sectional, international epidemiologic study. Ann Allergy Asthma Immunol. 2021;126(4):417–428.e2. doi: https://doi.org/10.1016/j.anai.2020.12.020

5. Esaki H, Brunner PM, Renert-Yuval Y, et al. Early-onset pediatric atopic dermatitis is TH2 but also TH17 polarized in skin. J Allergy Clin Immunol. 2016;138(6):1639–1651. doi: https://doi.org/10.1016/j.jaci.2016.07.013

6. Lee HH, Patel KR, Singam V, et al. A systematic review and meta-analysis of the prevalence and phenotype of adult-onset atopic dermatitis. J Am Acad Dermatol. 2019;80(6):1526–1532.e7. https://doi.org/10.1016/j.jaad.2018.05.1241

7. Agache I, Akdis CA. Precision medicine and phenotypes, endotypes, genotypes, regiotypes, and theratypes of allergic diseases. J Clin Invest. 2019;129(4):1493–1503. doi: https://doi.org/10.1172/JCI124611

8. Langan SM, Irvine AD, Weidinger S. Atopic dermatitis. Lancet. 2020;396(10247):345–360. doi: https://doi.org/10.1016/s0140-6736(20)31286-1

9. Nomura T, Wu J, Kabashima K, Guttman-Yassky E. Endophenotypic Variations of Atopic Dermatitis by Age, Race, and Ethnicity. J Allergy Clin Immunol Pract. 2020;8(6):1840–1852. doi: https://doi.org/10.1016/j.jaip.2020.02.022

10. Beck LA, Cork MJ, Amagai M, et al. Type 2 Inflammation Contributes to Skin Barrier Dysfunction in Atopic Dermatitis. JID Innov. 2022;2(5):100131. doi: https://doi.org/10.1016/j.xjidi.2022.100131

11. Weidinger S, Novak N. Atopic dermatitis. Lancet. 2016;387(10023): 1109–1122. doi: https://doi.org/10.1016/S0140-6736(15)00149-X

12. Barker JN, Palmer CN, Zhao Y, et al. Null mutations in the filaggrin gene (FLG) determine major susceptibility to early-onset atopic dermatitis that persists into adulthood. J Invest Dermatol. 2007;127(3):564–567. doi: https://doi.org/10.1038/sj.jid.5700587

13. Saunders SP, Moran T, Floudas A, et al. Spontaneous atopic dermatitis is mediated by innate immunity, with the secondary lung inflammation of the atopic march requiring adaptive immunity. J Allergy Clin Immunol. 2016;137(2):482–491. doi: https://doi.org/10.1016/j.jaci.2015.06.045

14. Elias PM, Hatano Y, Williams ML. Basis for the barrier abnormality in atopic dermatitis: Outside-inside-outside pathogenic mechanisms. J Allergy Clin Immunol. 2008;121(6):1337–1343. doi: https://doi.org/10.1016/j.jaci.2008.01.022

15. Kim BE, Leung DYM. Significance of Skin Barrier Dysfunction in Atopic Dermatitis. Allergy Asthma Immunol Res. 2018;10(3): 207–215. doi: https://doi.org/10.4168/aair.2018.10.3.207

16. Egawa G, Kabashima K. Multifactorial skin barrier deficiency and atopic dermatitis: Essential topics to prevent the atopic march. J Allergy Clin Immunol. 2016;138:350–358.e1. doi: https://doi.org/10.1016/j.jaci.2016.06.002

17. Spergel JM, Paller AS. Atopic dermatitis and the atopic march. J Allergy Clin Immunol. 2003;112(6 Suppl):S118–S127. doi: https://doi.org/10.1016/j.jaci.2003.09.033

18. Czarnowicki T, Krueger JG, Guttman-Yassky E. Novel concepts of prevention and treatment of atopic dermatitis through barrier and immune manipulations with implications for the atopic march. J Allergy Clin Immunol. 2017;139(6):1723–1734. doi: https://doi.org/10.1016/j.jaci.2017.04.004

19. Grobe W, Bieber T, Novak N. Pathophysiology of atopic dermatitis. J Dtsch Dermatol Ges. 2019;17(4):433–440. doi: https://doi.org/10.1111/ddg.13819

20. Nakahara T, Kido-Nakahara M, Tsuji G, Furue M. Basics and recent advances in the pathophysiology of atopic dermatitis. J Dermatol. 2020; 48(2):130–139. doi: https://doi.org/10.1111/1346-8138.15664

21. Yang G, Seok JK, Kang HC, et al. Skin Barrier Abnormalities and Immune Dysfunction in Atopic Dermatitis. Int J Mol Sci. 2020; 21(8):2867. doi: https://doi.org/10.3390/ijms21082867

22. Halling-Overgaard AS, Kezic S, Jakasa I, et al. Skin absorption through atopic dermatitis skin: A systematic review. Br J Dermatol. 2017;177(1):84–106. doi: https://doi.org/10.1111/bjd.15065

23. Tsakok T, Woolf R, Smith CH, et al. Atopic dermatitis: The skin barrier and beyond. Br J Dermatol. 2019;180(3):464–474. doi: https://doi.org/10.1111/bjd.16934

24. Ishikawa J, Narita H, Kondo N, et al. Changes in the ceramide profile of atopic dermatitis patients. J Invest Dermatol. 2010;130(10): 2511–2514. doi: https://doi.org/10.1038/jid.2010.161

25. Agrawal R, Woodfolk JA. Skin barrier defects in atopic dermatitis. Curr Allergy Asthma Rep. 2014;14(5):433. doi: https://doi.org/10.1007/s11882-014-0433-9

26. Zaniboni MC, Samorano LP, Orfali RL, Aoki V. Skin barrier in atopic dermatitis: Beyond filaggrin. Bras Dermatol. 2016;91(4):472–478. doi: https://doi.org/10.1590/abd1806-4841.20164412

27. Pellerin L, Henry J, Hsu CY, et al. Defects of filaggrin-like proteins in both lesional and nonlesional atopic skin. J Allergy Clin Immunol. 2013; 131(4):1094–1102. doi: https://doi.org/10.1016/j.jaci.2012.12.1566

28. Murashkin NN, Ivanov RA, Ambarchian ET, et al. Filaggrin and Atopic Dermatitis: Clinical and Pathogenetic Parallels and Therapeutic Possibilities. Voprosy sovremennoi pediatrii — Current Pediatrics. 2021;20(5):435–440. (In Russ). doi: https://doi.org/10.15690/vsp.v20i5.2320

29. Moosbrugger-Martinz V, Leprince C, Méchin M-C, et al. Revisiting the Roles of Filaggrin in Atopic Dermatitis. Int J Mol Sci. 2022;23(10):5318. doi: https://doi.org/10.3390/ijms23105318

30. On HR, Lee SE, Kim SE, et al. Filaggrin Mutation in Korean Patients with Atopic Dermatitis. Yonsei Med J. 2017;58(2): 395–400. doi: https://doi.org/10.3349/ymj.2017.58.2.395

31. Osawa R, Akiyama M, Shimizu H. Filaggrin gene defects and the risk of developing allergic disorders. Allergol Int. 2011;60(1):1–9. doi: https://doi.org/10.2332/allergolint.10-RAI-0270

32. Čepelak I, Dodig S, Pavić I. Filaggrin and atopic march. Biochem Med (Zagreb). 2019;29(2):020501. doi: https://doi.org/10.11613/BM.2019.020501

33. Brown SJ, McLean WH. One remarkable molecule: filaggrin. J Invest Dermatol. 2012;132(3 Pt 2):751–762. doi: https://doi.org/10.1038/jid.2011.393

34. Scott IR, Harding CR, Barrett JG. Histidine-rich protein of the keratohyalin granules. Source of the free amino acids, urocanic acid and pyrrolidone carboxylic acid in the stratum corneum. Biochim Biophys Acta. 1982;719(1):110–117. doi: https://doi.org/10.1016/0304-4165(82)90314-2

35. Hoste E, Kemperman P, Devos M, et al. Caspase-14 is required for filaggrin degradation to natural moisturizing factors in the skin. J Invest Dermatol. 2011;131(11):2233–2241. doi: https://doi.org/10.1038/jid.2011.153

36. Kamata Y, Taniguchi A, Yamamoto M, et al. Neutral cysteine protease bleomycin hydrolase is essential for the breakdown of deiminated filaggrin into amino acids. J Biol Chem. 2009;284(19):12829–12836. doi: https://doi.org/10.1074/jbc.M807908200

37. Kruglova LS, Pereverzina NO. Filaggrin: from history of discovery to clinical usage (literature review). Medical alphabet. 2021;(27):8–12. (In Russ). doi: https://doi.org/10.33667/2078-5631-2021-27-8-12

38. Murashkin NN, Epishev RV, Ivanov RA, et al. Innovations in Therapeutic Improvement of the Cutaneous Microbiome in Children with Atopic Dermatitis. Voprosy sovremennoi pediatrii — Current Pediatrics. 2022;21(5):352–361. (In Russ). doi: https://doi.org/10.15690/vsp.v21i5.2449

39. Kezic S, O’Regan GM, Yau N, et al. Levels of filaggrin degradation products are influenced by both filaggrin genotype and atopic dermatitis severity. Allergy. 2011;66(7):934–940. doi: https://doi.org/10.1111/j.1398-9995.2010.02540.x

40. Zeeuwen PL, Ederveen TH, Van Der Krieken DA, et al. Grampositive anaerobe cocci are underrepresented in the microbiome of filaggrin-deficient human skin. J Allergy Clin Immunol. 2017;139(4): 1368–1371. doi: https://doi.org/10.1016/j.jaci.2016.09.017

41. Emmert H, Baurecht H, Thielking F, et al. Stratum corneum lipidomics analysis reveals altered ceramide profile in atopic dermatitis patients across body sites with correlated changes in skin microbiome. Exp Dermatol. 2021;30(10):1398–1408. doi: https://doi.org/10.1111/exd.14185

42. Clausen ML, Agner T, Lilje B, et al. Association of Disease Severity With Skin Microbiome and Filaggrin Gene Mutations in Adult Atopic Dermatitis. JAMA Dermatol. 2018;154(3):293–300. doi: https://doi.org/10.1001/jamadermatol.2017.5440

43. Baurecht H, Ruhlemann MC, Rodriguez E, et al. Epidermal lipid composition, barrier integrity, and eczematous inflammation are associated with skin microbiome configuration. J Allergy Clin Immunol. 2018;141(1):1668–1676. doi: https://doi.org/10.1016/j.jaci.2018.01.019

44. Murashkin NN, Ambarchian ET, Materikin AI, Epishev RV. The Role of Epidermal Barrier Impairments in Atopic Dermatitis: Modern Concepts of Disease Pathogenesis. Voprosy sovremennoi pediatrii — Current Pediatrics. 2018;17(1):85–88. (In Russ). doi: https://doi.org/10.15690/vsp.v17i1.1859

45. Feuillie C, Vitry P, McAleer MA, et al. Adhesion of Staphylococcus aureus to corneocytes from atopic dermatitis patients is controlled by natural moisturizing factor levels. mBio. 2018;9(4):e01184-18. doi: https://doi.org/10.1128/mBio.01184-18

46. Murashkin NN, Opryatin LA, Epishev RV, et al. Filaggrin Defect at Atopic Dermatitis: Modern Treatment Options. Voprosy sovremennoi pediatrii — Current Pediatrics. 2022;21(5):347–351. (In Russ). doi: https://doi.org/10.15690/vsp.v21i5.2452

47. Topical skin care compositions. Patent. Publication Number: WO 2018/198039 A1. Publication Date: 01.11.2018. International Application No: PCT/IB2018/052866. International Filing Date: 25.04.2018. Applicant: DR. REDDY’S LABORATORIES LIMITED.

48. Tataurshchikova NS, Letyaeva OI, Rusanova AS. Management of atopic dermatitis in routine clinical practice. Russian Medical Inquiry. 2022;6(2):72–78. (In Russ). doi: https://doi.org/10.32364/2587-6821-2022-6-2-72-78

49. Araviyskaya ER, Bakulev AL, Gadzhigoroeva AG, et al. Practical issues in the use of emollients containing filaggrin modulators in the management of patients with atopic dermatitis and xerosis: Resolution of the Expert board. Russian Journal of Allergy. 2022;19(2):245–258. (In Russ). doi: https://doi.org/10.36691/RJA1538


Review

For citations:


Ambarchyan E.T., Kuzminova A.D., Ivanchikov V.V. Modern Treatment Options for Epidermal Dysfunction at Atopic Dermatitis. Current Pediatrics. 2023;22(5):382-386. (In Russ.) https://doi.org/10.15690/vsp.v22i5.2619

Views: 335


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)