Preview

Current Pediatrics

Advanced search

Skin Microbiome Composition and Key Factors of its Barrier Function

https://doi.org/10.15690/vsp.v22i5.2624

Abstract

The skin is the largest organ of the human body, it creates protective barrier between the internal and external environment. Skin barrier damage may result in homeostasis imbalance, inflammation, or bacterial infection. The microbiome plays a crucial role in maintaining normal skin functioning: control of pathogenic diversity of microorganisms, stimulate immune cells, and modulate chronic dermatoses development. There are various mechanisms for restoring skin barrier function. They are associated with the microorganisms’ activity. Thus, skin restoration is an important task included in the general concept of atopic dermatitis management. One of such methods is the skin surface colonization with commensals, so significant role is assigned to the new dermatological drugs. The normalization of the microbiome in affected skin areas with cosmetic care products can significantly affect the result of skin barrier restoration.

About the Authors

Nikolay N. Murashkin
National Medical Research Center of Children’s Health; Sechenov First Moscow State Medical University; Central State Medical Academy of Department of Presidential Affairs
Russian Federation

Moscow


Disclosure of interest:

receiving research grants from pharmaceutical companies Jansen, Eli Lilly, Novartis, Abbvi, Pfizer, Amryt Pharma plc. Receiving fees for scientific counseling from companies Galderna, Pierre Fabre, Bayer, Leopharma, Pfizer, AbbVie, Zeldis Pharma; receiving research grants from pharmaceutical companies Eli Lilly, Novartis, AbbVie, Pfizer, Amryt Pharma plc, Celgene



Ekaterina S. Pavlova
National Medical Research Center of Children’s Health
Russian Federation

Moscow


Disclosure of interest:

Other authors confirmed the absence of a reportable conflict of interests



Roman V. Epishev
National Medical Research Center of Children’s Health
Russian Federation

Moscow


Disclosure of interest:

receiving research grants from pharmaceutical companies Eli Lilly, Novartis, AbbVie, Pfizer, Amryt Pharma plc, Celgene



Alexander I. Materikin
National Medical Research Center of Children’s Health
Russian Federation

Moscow


Disclosure of interest:

receiving research grants from pharmaceutical companies Eli Lilly, Novartis, AbbVie, Pfizer, Amryt Pharma plc, Celgene



Roman A. Ivanov
National Medical Research Center of Children’s Health
Russian Federation

Moscow


Disclosure of interest:

Other authors confirmed the absence of a reportable conflict of interests



Alena A. Savelova
National Medical Research Center of Children’s Health
Russian Federation

Moscow


Disclosure of interest:

Other authors confirmed the absence of a reportable conflict of interests



Dmitriy V. Fedorov
National Medical Research Center of Children’s Health
Russian Federation

Moscow


Disclosure of interest:

Other authors confirmed the absence of a reportable conflict of interests



Maria A. Leonova
National Medical Research Center of Children’s Health
Russian Federation

Moscow


Disclosure of interest:

Other authors confirmed the absence of a reportable conflict of interests



References

1. Paller AS, Kong HH, Seed P, et al. The microbiome in patients with atopic dermatitis. J Allergy Clin Immunol. 2019;143(1):26–35. doi: https://doi.org/10.1016/j.jaci.2018.11.015

2. Belizario JE, Napolitano M. Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches. Front Microbiol. 2015;6:1050. doi: https://doi.org/10.3389/fmicb.2015.01050

3. Grice EA, Kong HH, Conlan S, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324(5931):1190–1192. doi: https://doi.org/10.1126/science.1171700.

4. Costello EK, Lauber CL, Hamady M, et al. Bacterial community variation in human body habitats across space and time. Science. 2009;326(5960):1694–1697. doi: https://doi.org/10.1126/science.1177486

5. Findley K, Oh J, Yang J, et al. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013;498(7454): 367–370. doi: https://doi.org/10.1038/nature12171

6. Schommer NN, Gallo RL. Structure and function of the human skin microbiome. Trends Microbiol. 2013;21(12):660–668. doi: https://doi.org/10.1016/j.tim.2013.10.001

7. Zheng Y, Liang H, Zhou M, et al. Skin bacterial structure of young females in China: The relationship between skin bacterial structure and facial skin types. Exp Dermatol. 2021;30(10):1366–1374. doi: https://doi.org/10.1111/exd.14105

8. Cogen AL, Nizet V, Gallo RL. Skin microbiota: a source of disease or defence? Br J Dermatol. 2008;158(3):442–455. doi: https://doi.org/10.1111/j.1365-2133.2008.08437.x

9. Cundell AM. Microbial Ecology of the Human Skin. Microb Ecol. 2018; 76(1):113–120. doi: https://doi.org/10.1007/s00248-016-0789-6

10. Sherwani MA, Tufail S, Muzaffar AF, Yusuf N. The skin microbiome and immune system: Potential target for chemoprevention? Photodermatol Photoimmunol Photomed. 2018;34(1):25–34. doi: https://doi.org/10.1111/phpp.12334

11. Byrd A, Belkaid Y, Segre J. The human skin microbiome. Nat Rev Microbiol. 2018;16(397):143–155. doi: https://doi.org/10.1038/nrmicro.2017.157

12. Otto M. Staphylococcus epidermidis — The ‘accidental’ pathogen. Nat Rev Microbiol. 2009;7(8):555–567. doi: https://doi.org/10.1038/nrmicro2182

13. Li D, Wang W, Wu Y, et al. Lipopeptide 78 from Staphylococcus epidermidis Activates -Catenin To Inhibit Skin Inflammation. J Immunol. 2019;202(4):1219–1228. doi: https://doi.org/10.4049/jimmunol.1800813

14. Lai Y, Di Nardo A, Nakatsuji T, et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat Med. 2009;15(12):1377–1382. doi: https://doi.org/10.1038/nm.2062

15. Bardan A, Nizet V, Gallo RL. Antimicrobial peptides and the skin. Exp Opin Biol Ther. 2004;4(4):543–549. doi: https://doi.org/10.1517/14712598.4.4.543

16. Kiatsurayanon C, Ogawa H, Niyonsaba F. The Role of Host Defense Peptide Human -defensins in the Maintenance of Skin Barriers. Curr Pharm Des. 2018;24(10):1092–1099. doi: https://doi.org/10.2174/1381612824666180327164445

17. Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: functions and clinical potential. Nature reviews. Nat Rev Drug Discov. 2020;19(5):311–332. doi: https://doi.org/10.1038/s41573-019-0058-8

18. Zipperer A, Konnerth MC, Laux C, et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature. 2016;535(7613):511–516. doi: https://doi.org/10.1038/nature18634

19. Nakatsuji T, Chen TH, Narala S, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med. 2017;9(378): eaah4680. doi: https://doi.org/10.1126/scitranslmed.aah4680

20. Cheng J, Hata T. Dysbiosis of the Skin Microbiome in Atopic Dermatitis. In: Skin Microbiome Handbook: From Basic Research to Product Development. Dayan N, ed. 1st ed. Beverly, MA, USA: Scrivener Publishing LLC; 2020.

21. Prescott SL, Larcombe DL, Logan AC, et al. The skin microbiome: Impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ J. 2017; 10(1):29. doi: https://doi.org/10.1186/s40413-017-0160-5

22. Farahmand S. Microbiome of Compromised Skin. In: Skin Microbiome Handbook: From Basic Research to Product Development. Dayan N., ed. 1st ed. Beverly, MA, USA: Scrivener Publishing LLC; 2020. pp. 145–170.

23. Langan SM, Irvine AD, Weidinger S. Atopic dermatitis. Lancet. 2020;396(10247):345–360. doi: https://doi.org/10.1016/s0140-6736(20)31286-1

24. Weidinger S, Beck LA, Bieber T, et al. Atopic dermatitis. Nat Rev Dis Primers. 2018;4(1):1. doi: https://doi.org/10.1038/s41572-018-0001-z

25. Kong HH, Oh J, Deming C, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22(5):850–859. doi: https://doi.org/10.1101/gr.131029.111

26. Baldwin H, Aguh C, Andriessen A, et al. Atopic Dermatitis and the Role of the Skin Microbiome in Choosing Prevention, Treatment, and Maintenance Options. J Drugs Dermatol. 2020;19(10): 935–940. doi: https://doi.org/10.36849/JDD.2020.10.36849/jDD.2020.5393

27. Ohnishi Y, Okino N, Ito M, Imayama S. Ceramidase activity in bacterial skin flora as a possible cause of ceramide deficiency in atopic dermatitis. Clin Diagn Lab Immunol. 1999;6(1):101–104. doi: 10.1128/cdli.6.1.101-104.1999

28. Kim JE, Kim HS. Microbiome of the skin and gut in atopic dermatitis (AD): Understanding the pathophysiology and finding novel management strategies. J Clin Med. 2019;8(4):444. doi: https://doi.org/10.3390/jcm8040444

29. Nakamura Y, Oscherwitz J, Cease KB, et al. Staphylococcus delta-toxin induces allergic skin disease by activating mast cells. Nature. 2013;503(7476):397–401. doi: https://doi.org/10.1038/nature12655

30. Seiti Yamada Yoshikawa F, Feitosa de Lima J, Notomi Sato M, et al. Exploring the role of staphylococcus aureus toxins in atopic dermatitis. Toxins (Basel). 2019;11(6):321. doi: https://doi.org/10.3390/toxins11060321

31. Kaesler S, Skabytska Y, Chen KM, et al. Staphylococcus aureus-derived lipoteichoic acid induces temporary T-cell paralysis independent of Toll-like receptor 2. J Allergy Clin Immunol. 2016;138(3):780–790.e6. doi: https://doi.org/10.1016/j.jaci.2015.11.043

32. Indra AK. Epidermal TSLP: A trigger factor for pathogenesis of atopic dermatitis. Expert Rev Proteom. 2013;10(4):309–311. doi: https://doi.org/10.1586/14789450.2013.814881

33. Chiu IM. Infection, pain, and itch. Neurosci Bull. 2018;34(1): 109–119. doi: https://doi.org/10.1007/s12264-017-0098-1

34. Blicharz L, Usarek P, Mlynarczyk G, et al. Is itch intensity in atopic dermatitis associated with skin colonization by Staphylococcus aureus? Indian J Dermatol. 2020;65(1):17–21. doi: https://doi.org/10.4103/ijd.IJD_136_19

35. Allen HB, Vaze ND, Choi C, et al. The presence and impact of biofilm-producing staphylococci in atopic dermatitis. JAMA Dermatol. 2014;150(3):260–265. doi: https://doi.org/10.1001/jamadermatol.2013.8627

36. Murashkin NN, Opryatin LA, Epishev RV, et al. Pruritus and Atopic Dermatitis: from Etiological Features to Management. Voprosy sovremennoi pediatrii — Current Pediatrics. 2020;19(6):468–476. (In Russ). doi: https://doi.org/10.15690/vsp.v19i6.2151

37. Adaskevich VP. Kozhnyi zud. Dermatologicheskii i mezhdistsiplinarnyi fenomen. Moscow: BINOM; 2014. 260 p.

38. Sonkoly E, Muller A, Lauerma AI, et al. IL-31: A new link between T cells and pruritus in atopic skin inflammation. J Allergy Clin Immunol. 2006;117(2):411–417. doi: https://doi.org/10.1016/j.jaci.2005.10.033

39. Andrew D, Craig AD. Spinothalamic lamina I neurons selectively sensitive to histamine: a central neural pathway for itch. Nat Neurosci. 2001;4(1):9–10. doi: https://doi.org/10.1038/82924

40. Mack MR, Kim BS. The itch-scratch cycle: A neuroimmune perspective. Trends Immunol. 2018;39(12):980–991. doi: https://doi.org/10.1016/j.it.2018.10.001

41. Potenzieri C, Undem BJ. Basic mechanisms of itch. Clin Exp Allergy. 2012;42(1):8–19. doi: https://doi.org/10.1111/j.13652222.2011.03791.x

42. Proksch E, Fölster-Holst R, Jensen JM. Skin barrier function, epidermal proliferation and differentiation in eczema. J Dermatol Sci. 2006; 43(3):159–169. doi: https://doi.org/10.1016/j.jdermsci.2006.06.003

43. Huang JT, Abrams M, Tlougan B, et al. Treatment of Staphylococcus aureus colonization in atopic dermatitis decreases disease severity. Pediatrics. 2009;123(5):e808–e814. doi: https://doi.org/10.1542/peds.2008-2217

44. Habeebuddin M, Karnati RK, Shiroorkar PN, et al. Topical Probiotics: More Than a Skin Deep. Pharmaceutics. 2022;14(3):557. doi: https://doi.org/10.3390/pharmaceutics14030557

45. Petrov A, Ćorović M, Milivojević A, et al. Prebiotic effect of galacto-oligosaccharides on the skin microbiota and determination of their diffusion properties. Int J Cosmet Sci. 2022;44(3):309–319. doi: https://doi.org/10.1111/ics.12778

46. Volz T, Skabytska Y, Guenova E, et al. Nonpathogenic bacteria alleviating atopic dermatitis inflammation induce IL-10-producing dendritic cells and regulatory Tr1 cells. J Invest Dermatol. 2014;134(1):96–104. doi: https://doi.org/10.1038/jid.2013.291

47. Mahe YF, Perez M-J, Tacheau C, et al. A new Vitreoscilla filiformis extract grown on spa water-enriched medium activates endogenous cutaneous antioxidant and antimicrobial defenses through a potential Toll-like receptor 2/protein kinase C, zeta transduction pathway. Clin Cosmet Investig Dermatol. 2013;6:191–196. doi: https://doi.org/10.2147/CCID.S47324

48. van Tubergen A, van der Linden S. A brief history of spa therapy. Ann Rheum Dis. 2002;61(3):273–275. doi: https://doi.org/10.1136/ard.61.3.273

49. Gorski J, Proksch E, Baron JM, et al. Dexpanthenol in Wound Healing after Medical and Cosmetic Interventions (Postprocedure Wound Healing). Pharmaceuticals. 2020;13(7):138. doi: https://doi.org/10.3390/ph13070138


Review

For citations:


Murashkin N.N., Pavlova E.S., Epishev R.V., Materikin A.I., Ivanov R.A., Savelova A.A., Fedorov D.V., Leonova M.A. Skin Microbiome Composition and Key Factors of its Barrier Function. Current Pediatrics. 2023;22(5):387-392. (In Russ.) https://doi.org/10.15690/vsp.v22i5.2624

Views: 572


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)