Preview

Вопросы современной педиатрии

Расширенный поиск

Лекарственные препараты передовой терапии: перспективы внедрения в клиническую практику в педиатрии

https://doi.org/10.15690/vsp.v23i1.2654

Аннотация

В статье обсуждаются классификации лекарственных средств для генной и клеточной терапии. Представлены данные о лекарственных средствах, зарегистрированных в России, а также в странах Европейского союза, Великобритании, США и Японии. Рассмотрены ограничения использования таких лекарственных средств, в том числе их высокая утилитарная стоимость и высокий риск нежелательных явлений.  Проанализирован потенциал повышения клинической эффективности и экономической целесообразности медицинских технологий для передовой терапии, в том числе в педиатрии.

Об авторах

Ю. М. Гомон
Первый СПбГМУ им. акад. И.П. Павлова; Городская больница Святого Великомученика Георгия
Россия

Гомон Юлия Михайловна, доктор медицинских наук, профессор кафедры клинической фармакологии и доказательной медицины; врач клинический фармаколог

194354, Санкт-Петербург, Северный пр., д. 1

тел.: +7 (911) 960-62-68


Раскрытие интересов:

Нет



А. С. Колбин
Первый СПбГМУ им. акад. И.П. Павлова; СПбГУ
Россия

 Санкт-Петербург


Раскрытие интересов:

Нет



Список литературы

1. Harding SD, Armstrong JF, Faccenda E, et al. The IUPHAR/BPS Guide to PHARMACOLOGY in 2024. Nucleic Acids Res. 2024;52(D1): D1438–D1449. doi: https://doi.org/10.1093/nar/gkad944

2. Clinical Pharmacology. Scope, Organisation, Training. Report of a WHO Study group. World Health Organ Tech Rep Ser. 1970;446:5–21.

3. CIOMS Cumulative glossary with a focus on pharmacovigilance. Geneva, Switzerland: Council for International Organizations of Medical Sciences (CIOMS); 2022. doi: https://doi.org/10.56759/ocef1297

4. Вербицкая Е.В., Белоусов Д.Ю., Колбин А.С. Доказательная медицина: новое в поиске доказательств // Качественная клиническая практика. — 2023. — № 3. — С. 15–28. — doi: https://doi.org/10.37489/2588-0519-2023-3-15-28

5. Fraterman S, Xie W, Wu C, et al. New drug modalities offer promise and Peril. 2023. Available online: https://www.bcg.com/publications/2023/benefits-and-risks-of-new-drug-modalities. Accessed on January 01, 2024.

6. Choi Y, Vinks AA, van der Graaf PH. Novel Therapeutic Modalities: The Future is Now. Clin Pharmacol Ther. 2023;114(3):493–496. doi: https://doi.org/10.1002/cpt.2996

7. Pizevska M, Kaeda J, Fritsche E, et al. Advanced therapy medicinal products’ translation in Europe: a developers’ perspective. Front Med. 2022;9:757647. doi: https://doi.org/10.3389/fmed.2022.757647

8. Garrison L, Jackson T, Paul D, Kenston M. Value-based pricing for emerging gene therapies: the economic case for a higher cost-effectiveness threshold. J Manag Care Spec Pharm. 2019;25(7): 793–799. doi: https://doi.org/10.18553/jmcp.2019.18378

9. Lakdawalla DN, Phelps CE. Evaluation of medical technologies with uncertain benefits. National Bureau of Economic Research. July 11, 2019. Available online: https://www.nber.org/papers/w26058. Accessed on January 27, 2024.

10. Association of the British Pharmaceutical Industry (ABPI). Advanced therapy medicinal products (ATMPs). Available online: https://www.abpi.org.uk/value-and-access/advanced-therapymedicinal-products-atmps. Accessed on January 01, 2024.

11. European Medicines Agency. Reflection paper on classification of advanced therapy medicinal products. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-classification-advanced-therapy-medicinalproducts_en-0.pdf. Accessed on January 01, 2024.

12. U.S. Food and Drug Administration (FDA). Code of Federal Regulation. Title 21: Food and drugs. Chapter I: Food and Drug Administration. Subchapter L: Regulations under certain other acts administered by the Food and Drug Administration. Part 1271: Human cells, tissues, and cellular and tissue-based products. Subpart A: General Provisions. Section 1271.3: How does FDA define important terms in this part? Oct 17, 2023. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=1271.3. Accessed on January 27, 2024.

13. U.S. Department of Health and Human Services, Food and Drug Administration. Part II. Application of current statutory authorities to human somatic cell therapy products and gene therapy products; Notice. Federal Register. 1993;58(179):53248–53251. Available online: https://www.fda.gov/media/76647/download. Accessed on January 27, 2024.

14. BioProcess International. Transforming personalized medicine into off-the-shelf cell therapies. Available online: https://bioprocessintl.com/sponsored-content/allogeneic-cell-therapytransforming-personalized-medicine-into-off-the-shelf-celltherapies. Accessed on January 01, 2024.

15. Федеральный закон от 12 апреля 2010 г. № 61-ФЗ «Об обращении лекарственных средств». Доступно по: https://base.garant.ru/12174909. Ссылка активна на 01.01.2024.

16. Федеральный закон от 05 июня 1996 г. № 86-ФЗ «О государственном регулировании в области генно-инженерной деятельности» Доступно по: https://base.garant.ru/10135402. Ссылка активна на 01.01.2024.

17. Федеральный закон от 23 июня 2016 г. № 180-ФЗ «О биомедицинских клеточных продуктах». Доступно по: https://base.garant.ru/71427992. Ссылка активна на 01.01.2024.

18. Решение Совета Евразийской экономической комиссии от 3 ноября 2016 г. № 78 «О Правилах регистрации и экспертизы лекарственных средств для медицинского применения» (с изменениями на 24 ноября 2023 г.). Доступно по: https://docs.cntd.ru/document/456026097. Ссылка активна на 27.01.2024.

19. KEGG. New Drug Approvals in Europe. Available online: https://www.genome.jp/kegg/drug/br08329.html#2. Accessed on September 22, 2023.

20. KEGG. New Drug Approvals in the USA. Available online: https://www.genome.jp/kegg/drug/br08319.html. Accessed on September 22, 2023.

21. KEGG. New Drug Approvals in Japan. Available online: https://www.genome.jp/kegg/drug/br08318.html#2. Accessed on September 22, 2023.

22. Wilkins GC, Lanyi K, Inskip A, et al. A pipeline analysis of advanced therapy medicinal products. Drug Discov Today. 2023;28(5): 103549. doi: https://doi.org/10.1016/j.drudis.2023.103549

23. European Medicines Agency. Holoclar. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/holoclar. Accessed on September 22, 2023.

24. European Medicines Agency. Strimvelis. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/strimvelis. Accessed on September 22, 2023.

25. Goula A, Gkioka V, Michalopoulos E, et al. Advanced therapy medicinal products challenges and perspectives in regenerative medicine. J Clin Med Res. 2020;12(12):780–786. doi: https://doi.org/10.14740/jocmr3964

26. Rejon-Parrilla JC, Espin J, Garner S, et al. Pricing and reimbursement mechanisms for advanced therapy medicinal products in 20 countries. Front Pharmacol. 2023;14:1199500. doi: https://doi.org/10.3389/fphar.2023.1199500

27. Aguilera-Cobos L, Rosario-Lozano MP, Ponce-Polo A, et al. Barriers for the evaluation of advanced therapy medicines and their translation to clinical practice: Umbrella review. Health Policy. 2022;126(12):1248–1255. doi: https://doi.org/10.1016/j.healthpol.2022.10.007

28. Meng J, Wu X, Sun Z, et al. Efficacy and Safety of CAR-T Cell Products Axicabtagene Ciloleucel, Tisagenlecleucel, and Lisocabtagene Maraleucel for the Treatment of Hematologic Malignancies: A Systematic Review and Meta-Analysis. Front Oncol. 2021;11:698607. doi: https://doi.org/10.3389/fonc.2021.698607

29. Roth TL, Marson A. Genetic Disease and Therapy. Annu Rev Pathol. 2021;16:145–166. doi: https://doi.org/10.1146/annurevpathmechdis-012419-032626

30. Olowoyeye A, Okwundu CI. Gene therapy for sickle cell disease. Cochrane Database Syst Rev. 2020;11(11):CD007652. doi: https://doi.org/10.1002/14651858.CD007652.pub7

31. Maule G, Arosio D, Cereseto A. Gene Therapy for Cystic Fibrosis: Progress and Challenges of Genome Editing. Int J Mol Sci. 2020;21(11):3903. doi: https://doi.org/10.3390/ijms21113903

32. Piotter E, McClements ME, MacLaren RE. Therapy Approaches for Stargardt Disease. Biomolecules. 2021;11(8):1179. doi: https://doi.org/10.3390/biom11081179

33. Hu ML, Edwards TL, O’Hare F, et al. Gene therapy for inherited retinal diseases: progress and possibilities. Clin Exp Optom. 2021;104(4):444–454. doi: https://doi.org/10.1080/08164622.2021.1880863

34. Kishnani PS, Sun B, Koeberl DD. Gene therapy for glycogen storage diseases. Hum Mol Genet. 2019;28(R1):R31–R41. doi: https://doi.org/10.1093/hmg/ddz133

35. Wiedemann A, Oussalah A, Jeannesson É, et al. Phenylketonuria, from diet to gene therapy. Med Sci (Paris). 2020;36(8-9):725–734. doi: https://doi.org/10.1051/medsci/2020127

36. Noone AM, Howlader N, Krapcho M, et al. SEER Cancer Statistics Review, 1975–2015. National Cancer Institute; 2018. Available online: https://seer.cancer.gov/csr/1975_2015. Accessed on January 27, 2024.

37. Novartis Pharmaceuticals Corporation. Package insert — Kymriah® (tisagenlecleucel). Novartis Pharmaceuticals Corporation ; 2018. Available online: https://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/UCM573941.pdf. Accessed on January 27, 2024.

38. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–448. doi: https://doi.org/10.1056/NEJMoa1709866

39. Lamble AJ, Myers RM, Taraseviciute A, et al. Preinfusion factors impacting relapse immunophenotype following CD19 CAR T cells. Blood Adv. 2023;7(4):575–585. doi: https://doi.org/10.1182/bloodadvances.2022007423

40. Shah NN, Highfill SL, Shalabi H, et al. CD4/CD8 T-cell selection affects chimeric antigen receptor (CAR) T-cell potency and toxicity: updated results from a phase I anti-CD22 CAR T-cell trial. J Clin Oncol. 2020;38(17):1938–1950. doi: https://doi.org/10.1200/JCO.19.03279

41. Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018;24(1):20–28. doi: https://doi.org/10.1038/nm.4441

42. Talleur AC, Naik S, Gottschalk S. Preventing relapse after CD19 CAR T-cell therapy for pediatric ALL: the role of transplant and enhanced CAR T cells. Hematology Am Soc Hematol Educ Program. 2023;2023(1):91–96. doi: https://doi.org/10.1182/hematology.2023000424

43. Cordoba S, Onuoha S, Thomas S, et al. CAR T cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia: a phase 1 trial. Nat Med. 2021;27(10):1797–1805. doi: https://doi.org/10.1038/s41591-021-01497-1

44. Wang T, Tang Y, Cai J, et al. Coadministration of CD19- and CD22-directed chimeric antigen receptor T-cell therapy in childhood B-cell acute lymphoblastic leukemia: a single-arm, multicenter, phase II trial. J Clin Oncol. 2023;41(9):1670–1683. doi: https://doi.org/10.1200/jco.22.01214

45. Schubert ML, Schmitt M, Wang L, et al. Side-effect management of chimeric antigen receptor (CAR) T-cell therapy. Ann Oncol. 2021;32(1):34–48. doi: https://doi.org/10.1016/j.annonc.2020.10.478

46. Yakoub-Agha I, Chabannon C, Bader P, et al. Management of adults and children undergoing chimeric antigen receptor T-cell therapy: best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE). Haematologica. 2020;105(2):297–316. doi: https://doi.org/10.3324/haematol.2019.229781

47. Mahadeo KM, Khazal SJ, Abdel-Azim H, et al. Management guidelines for paediatric patients receiving chimeric antigen receptor T cell therapy. Nat Rev Clin Oncol. 2019;16(1):45–63. doi: https://doi.org/10.1038/s41571-018-0075-2

48. Epperly R, Shah NN. Long-term follow-up of CD19-CAR T-cell therapy in children and young adults with B-ALL. Hematology Am Soc Hematol Educ Program. 2023;2023(1):77–83. doi: https://doi.org/10.1182/hematology.2023000422

49. Dagar G, Gupta A, Masoodi T, et al. Harnessing the potential of CAR-T cell therapy: progress, challenges, and future directions in hematological and solid tumor treatments. J Transl Med. 2023;21(1):449. doi: https://doi.org/10.1186/s12967-023-04292-3

50. MacDonald KN, Piret JM, Levings MK. Methods to manufacture regulatory T cells for cell therapy. Clin Exp Immunol. 2019;197(1): 52–63. doi: https://doi.org/10.1111/cei.13297

51. Aijaz A, Li M, Smith D, et al. Biomanufacturing for clinically advanced cell therapies. Nat Biomed Eng. 2018;2(6):362–376. doi: https://doi.org/10.1038/s41551-018-0246-6

52. Morgan MA, Büning H, Sauer M, Schambach A. Use of Cell and Genome Modification Technologies to Generate Improved “Off-the-Shelf” CAR T and CAR NK Cells. Front Immunol. 2020;11:1965. doi: https://doi.org/10.3389/fimmu.2020.01965

53. Lulla PD, Brenner M. Emerging Challenges to Cellular Therapy of Cancer. Cancer J. 2023;29(1):20–27. doi: https://doi.org/10.1097/PPO.0000000000000637

54. Scherer LD, Brenner MK, Mamonkin M. Chimeric antigen receptors for T-cell malignancies. Front Oncol. 2019;9:126. doi: https://doi.org/10.3389/fonc.2019.00126

55. Mamonkin M, Rouce RH, Tashiro H, Brenner MK. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood. 2015;126(8):983–992. doi: https://doi.org/10.1182/blood-2015-02-629527

56. Pan J, Tan Y, Wang G, et al. Donor-derived CD7 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia: first-in-human, phase I trial. J Clin Oncol. 2021;39(30):3340–3351. doi: https://doi.org/10.1200/JCO.21.00389

57. Li S, Wang X, Yuan Z, et al. Eradication of T-ALL cells by CD7- targeted universal CAR-T cells and initial test of ruxolitinib-based CRS management. Clin Cancer Res. 2021;27(5):1242–1246. doi: https://doi.org/10.1158/1078-0432.CCR-20-1271

58. Pearson AD, Rossig C, Mackall C, et al. Paediatric Strategy Forum for medicinal product development of chimeric antigen receptor T-cells in children and adolescents with cancer: ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur J Cancer. 2022;160: 112–133. doi: https://doi.org/10.1016/j.ejca.2021.10.016

59. Hensel J, Metts J, Gupta A, et al. Adoptive Cellular Therapy for Pediatric Solid Tumors: Beyond Chimeric Antigen Receptor-T Cell Therapy. Cancer J. 2022;28(4):322–327. doi: https://doi.org/10.1097/PPO.0000000000000603

60. Martinez DR, Permar SR, Fouda GG. Contrasting adult and infant immune responses to HIV infection and vaccination. Clin Vaccine Immunol. 2015;23(2):84–94. doi: https://doi.org/10.1128/CVI.00565-15

61. Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age. Proc Biol Sci. 2015;282(1821):20143085. doi: https://doi.org/10.1098/rspb.2014.3085

62. Rahal Z, Abdulhai F, Kadara H, et al. Genomics of adult and pediatric solid tumors. Am J Cancer Res. 2018;8(8):1356–1386.

63. Casey DL, Cheung NV. Immunotherapy of pediatric solid tumors: treatments at a crossroads, with an emphasis on antibodies. Cancer Immunol Res. 2020;8(2):161–166. doi: https://doi.org/10.1158/2326-6066.CIR-19-0692

64. Kumar V, Patel S, Tcyganov E, et al. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 2016;37(3):208–220. doi: https://doi.org/10.1016/j.it.2016.01.004

65. Li S, Zhang H, Shang G. Current status and future challenges of CAR-T cell therapy for osteosarcoma. Front Immunol. 2023;14:1290762. doi: https://doi.org/10.3389/fimmu.2023.1290762

66. DeRenzo C, Gottschalk S. Genetically Modified T-Cell Therapy for Osteosarcoma: Into the Roaring 2020s. Adv Exp Med Biol. 2020;1257:109–131. doi: https://doi.org/10.1007/978-3-030-43032-0_10

67. FDA News Release. FDA Approves First Cellular Therapy to Treat Patients with Type 1 Diabetes. Available online: https://www.fda.gov/news-events/press-announcements/fda-approvesfirst-cellular-therapy-treat-patients-type-1-diabetes. Accessed on January 01, 2024.

68. Loretelli C, Assi E, Seelam AJ, et al. Cell therapy for type 1 diabetes. Expert Opin Biol Ther. 2020;20(8):887–897. doi: https://doi.org/10.1080/14712598.2020.1748596

69. Izquierdo C, Ortiz AZ, Presa M, et al. Treatment of T1D via optimized expansion of antigen-specific Tregs induced by IL-2/antiIL-2 monoclonal antibody complexes and peptide/MHC tetramers. Sci Rep. 2018;8(1):8106. doi: https://doi.org/10.1038/s41598-018-26161-6

70. Penaforte-Saboia JG, Montenegro RM Jr, Couri CE, et al. Microvascular complications in Type 1 diabetes: a comparative analysis of patients treated with autologous nonmyeloablative hematopoietic stem-cell transplantation and conventional medical therapy. Front Endocrinol (Lausanne). 2017:8:331. doi: https://doi.org/10.3389/fendo.2017.00331

71. Phillips BE, Garciafigueroa Y, Engman C, et al. Tolerogenic dendritic cells and T-regulatory cells at the clinical trials crossroad for the treatment of autoimmune disease; emphasis on Type 1 diabetes therapy. Front Immunol. 2019;10:148. doi: https://doi.org/10.3389/fimmu.2019.00148

72. D’Amour KA, Agulnick AD, Eliazer S, et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 2005;23(12):1534–1541. doi: https://doi.org/10.1038/nbt1163

73. Shahjalal HM, Abdal Dayem A, Lim KM, et al. Generation of pancreatic β cells for treatment of diabetes: advances and challenges. Stem Cell Res Ther. 2018:9(1):355. doi: https://doi.org/10.1186/s13287-018-1099-3

74. Izadi M, Sadr Hashemi Nejad A, Moazenchi M, et al. Mesenchymal stem cell transplantation in newly diagnosed type-1 diabetes patients: a phase I/II randomized placebo-controlled clinical trial. Stem Cell Res Ther. 2022;13(1):264. doi: https://doi.org/10.1186/s13287-022-02941-w

75. Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966;16(3):381–390.

76. Pelagiadis I, Dimitriou H, Kalmanti M. Biologic characteristics of mesenchymal stromal cells and their clinical applications in pediatric patients. J Pedia Hematol Oncol. 2008;30(4):301–309. doi: https://doi.org/10.1097/MPH.0b013e31816356e3

77. Luk F, Carreras-Planella L, Korevaar SS, et al. Inflammatory conditions dictate the effect of mesenchymal stem or stromal cells on B cell function. Front Immunol. 2017;8;1042. doi: https://doi.org/10.3389/fimmu.2017.01042

78. Guillamat-Prats R. The role of MSC in wound healing, scarring and regeneration. Cells. 2021;10(7):1729. doi: https://doi.org/10.3390/cells10071729

79. Dicker A, Le Blanc K, Aström G, et al. Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp Cell Res. 2005;308(2):283–290. doi: https://doi.org/10.1016/j.yexcr.2005.04.029

80. Wexler SA, Donaldson C, Denning-Kendall P, et al. Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol. 2003;121(2):368–374. doi: https://doi.org/10.1046/j.1365-2141.2003.04284.x

81. de Sá Silva F, Almeida PN, Rettore JV, et al. Toward personalized cell therapies by using stem cells: seven relevant topics for safety and success in stem cell therapy. J Biomed Biotechnol. 2012;2012:758102. doi: https://doi.org/10.1155/2012/758102

82. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001;19(3):180–192. doi: https://doi.org/10.1634/stemcells.19-3-180

83. Brennan LC, O’Sullivan A, MacLoughlin R. Cellular Therapy for the Treatment of Paediatric Respiratory Disease. Int J Mol Sci. 2021;22(16):8906. doi: https://doi.org/10.3390/ijms22168906

84. Tong Y, Zuo J, Yue D. Application Prospects of Mesenchymal Stem Cell Therapy for Bronchopulmonary Dysplasia and the Challenges Encountered. Biomed Res Int. 2021;2021:9983664. doi: https://doi.org/10.1155/2021/9983664

85. Nguyen LT, Trieu TTH, Bui HTH, et al. Allogeneic administration of human umbilical cord-derived mesenchymal stem/stromal cells for bronchopulmonary dysplasia: preliminary outcomes in four Vietnamese infants. J Transl Med. 2020;18(1):398. doi: https://doi.org/10.1186/s12967-020-02568-6

86. Öktem A, Çelik HT, Yiğit Ş, Yurdakök M. The clinical and radiological course of bronchopulmonary dysplasia in twins treated with mesenchymal stem cells and followed up using lung ultrasonography. Turk Pediatri Ars. 2020;55(4):425–429. doi: https://doi.org/10.14744/TurkPediatriArs.2019.88785

87. Lin WY, Wu KH, Chen CY, et al. Stem Cell Therapy in Children with Traumatic Brain Injury. Int J Mol Sci. 2023;24(19):14706. doi: https://doi.org/10.3390/ijms241914706

88. Ahn SY, Chang YS, Sung SI, Park WS. Mesenchymal stem cells for severe intraventricular hemorrhage in preterm infants: phase I dose-escalation clinical trial. Stem Cells Transl Med. 2018;7(12): 847–856. doi: https://doi.org/10.1002/sctm.17-0219

89. Baak LM, Wagenaar N, van der Aa NE, et al. Feasibility and safety of intranasally administered mesenchymal stromal cells after perinatal arterial ischaemic stroke in the Netherlands (PASSIoN): a first-in-human, open-label intervention study. Lancet Neurol. 2022;21(6):528–536. doi: https://doi.org/10.1016/S1474-4422(22)00117-X

90. Huang L, Zhang C, Gu J, et al. A randomized, placebo-controlled trial of human umbilical cord blood mesenchymal stem cell infusion for children with cerebral palsy. Cell Transpl. 2018;27(2):325–334. doi: https://doi.org/10.1177/0963689717729379

91. Sun JM, Case LE, McLaughlin C, et al. Motor function and safety after allogeneic cord blood and cord tissue-derived mesenchymal stromal cells in cerebral palsy: An open-label, randomized trial. Dev Med Child Neurol. 2022;64(12):1477–1486. doi: https://doi.org/10.1111/dmcn.15325

92. Valsecchi C, Croce S, Lenta E, et al. New therapeutic approaches in pediatric diseases: Mesenchymal stromal cell and mesenchymal stromal cell-derived extracellular vesicles as new drugs. Pharmacol Res. 2023;192:106796. doi: https://doi.org/10.1016/j.phrs.2023.106796

93. Baumgartner JE, Baumgartner LS, Baumgartner ME, et al. Progenitor cell therapy for acquired pediatric nervous system injury: Traumatic brain injury and acquired sensorineural hearing loss. Stem Cells Transl Med. 2021;10(2):164–180. doi: https://doi.org/10.1002/sctm.20-0026

94. Смирнов В.Н., Незнанов Н.Г., Морозова Я.В. и др. Применение концентрата ядросодержащих клеток пуповинной крови у детей с аутизмом: безопасность и эффективность метода // Журнал неврологии и психиатрии им. С.С. Корсакова. — 2021. — Т. 121. — № 11-2. — С. 31–37. — doi: https://doi.org/10.17116/jnevro202112111231

95. Abbuehl JP, Tatarova Z, Held W, Huelsken J. Long-Term Engraftment of Primary Bone Marrow Stromal Cells Repairs Niche Damage and Improves Hematopoietic Stem Cell Transplantation. Cell Stem Cell. 2017;21(2):241–255. doi: https://doi.org/10.1016/j.stem.2017.07.004

96. Morata-Tarifa C, Macías-Sánchez MDM, Gutiérrez-Pizarraya A, Sanchez-Pernaute R. Mesenchymal stromal cells for the prophylaxis and treatment of graft-versus-host disease-a meta-analysis. Stem Cell Res Ther. 2020;11(1):64. doi: https://doi.org/10.1186/s13287-020-01592-z

97. Kurtzberg J, Prockop S, Teira P, et al. Allogeneic human mesenchymal stem cell therapy (remestemcel-L, Prochymal) as a rescue agent for severe refractory acute graft-versus-host disease in pediatric patients. Biol Blood Marrow Transplant. 2014;20(2): 229–235. doi: https://doi.org/10.1016/j.bbmt.2013.11.001

98. Mumme M, Wixmerten A, Miot S, et al. Tissue engineering for paediatric patients. Swiss Med Wkly. 2019;149:w20032. doi: https://doi.org/10.4414/smw.2019.20032

99. Shaw N, Erickson C, Bryant SJ, et al. Regenerative Medicine Approaches for the Treatment of Pediatric Physeal Injuries. Tissue Eng Part B Rev. 2018;24(2):85–97. doi: https://doi.org/10.1089/ten.teb.2017.0274

100. Martin I, Jakob M, Schaefer DJ. From Tissue Engineering to Regenerative Surgery. EBioMedicine. 2018;28:11–12. doi: https://doi.org/10.1016/j.ebiom.2018.01.029

101. Carlier A, Vasilevich A, Marechal M, et al. In silico clinical trials for pediatric orphan diseases. Sci Rep. 2018;8(1):2465. doi: https://doi.org/10.1038/s41598-018-20737-y


Рецензия

Для цитирования:


Гомон Ю.М., Колбин А.С. Лекарственные препараты передовой терапии: перспективы внедрения в клиническую практику в педиатрии. Вопросы современной педиатрии. 2024;23(1):34-47. https://doi.org/10.15690/vsp.v23i1.2654

For citation:


Gomon Yu.M., Kolbin A.S. Advanced-Therapy Medicinal Products: Challenges for Implementation in Pediatric Clinical Practice. Current Pediatrics. 2024;23(1):34-47. (In Russ.) https://doi.org/10.15690/vsp.v23i1.2654

Просмотров: 698


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)