Диагностика катехоламинергической полиморфной желудочковой тахикардии
https://doi.org/10.15690/vsp.v23i4.2773
Аннотация
Катехоламинергическая полиморфная желудочковая тахикардия (КПЖТ) — первичное электрическое заболевание сердца, которое характеризуется развитием полиморфной, в том числе двунаправленной, желудочковой тахикардии в ответ на адренергическую стимуляцию, вызванную физической или эмоциональной нагрузкой. Основным клиническим проявлением КПЖТ являются обморочные состояния, вызываемые физическими упражнениями, эмоциональным стрессом или применением бета-адреномиметиков. Для заболевания характерна высокая летальность при отсутствии лечения. Трудности доклинической диагностики и задержка диагностики КПЖТ даже после манифестации клинических признаков заболевания обусловливают необходимость анализа и систематизации данных о причинах развития, особенностях клинических проявлений заболевания и существующих диагностических подходах. В настоящей работе особое внимание уделено анализу молекулярно-генетических причин заболевания и спектра ассоциированных нарушений у больных с КПЖТ в связи с диагностикой, тактикой ведения и определением прогноза. Отмечены направления дальнейших исследований для повышения качества диагностики и снижения летальности в когорте больных с КПЖТ.
Об авторах
Е. К. КульбачинскаяРоссия
Кульбачинская Екатерина Константиновна, врач детский кардиолог НИКИ педиатрии и детской хирургии им. акад. Ю.Е. Вельтищева, ассистент кафедры инновационной педиатрии и детской хирургии факультета дополнительного профессионального образования
125412, Москва, Талдомская улица, д. 2, тел.: +7 (495) 483-30-65
Раскрытие интересов:
Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.
В. В. Березницкая
Россия
125412, Москва, Талдомская улица, д. 2, тел.: +7 (495) 483-30-65
Раскрытие интересов:
Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.
Список литературы
1. Lahtinen AM, Havulinna AS, Noseworthy PA, et al. Prevalence of arrhythmia-associated gene mutations and risk of sudden cardiac death in the Finnish population. Ann Med. 2013;45(4):328–335. doi: https://doi.org/10.3109/07853890.2013.783995
2. Broendberg AK, Nielsen JC, Bjerre J, et al. Nationwide experience of catecholaminergic polymorphic ventricular tachycardia caused by RyR2 mutations. Heart. 2017;103(12):901–909. doi: https://doi.org/10.1136/heartjnl-2016-310509
3. Pflaumer A, Wilde AAM, Charafeddine F, Davis AM. 50 Years of Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) — Time to Explore the Dark Side of the Moon. Heart Lung Circ. 2020;29(4):520–528. doi: https://doi.org/10.1016/j.hlc.2019.10.013
4. Kawata H, Ohno S, Aiba T, et al. Catecholaminergic polymorphic ventricular tachycardia (CPVT) associated with ryanodine receptor (RyR2) gene mutations: Long-term prognosis after initiation of medical treatment. Circ J. 2016;80(9):1907–1915. doi: https://doi.org/10.1253/circj.CJ-16-0250
5. Jiang H, Li XM, Ge HY, et al. Investigation of Catecholaminergic Polymorphic Ventricular Tachycardia Children in China: Clinical Characteristics, Delay to Diagnosis, and Misdiagnosis. Chin Med J (Engl). 2018;131(23):2864–2865. doi: https://doi.org/10.4103/0366-6999.246078
6. Swan H, Piippo K, Viitasalo M, et al. Arrhythmic disorder mapped to chromosome 1q42–q43 causes malignant polymorphic ventricular tachycardia in structurally normal hearts. J Am Coll Cardiol. 1999;34(7):2035–2042. doi: https://doi.org/10.1016/s0735-1097(99)00461-1
7. Priori SG, Napolitano C, Tiso N, et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation. 2001;103(2): 196–200. doi: https://doi.org/10.1161/01.cir.103.2.196
8. Eldar M, Pras E, Lahat H. A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in bedouin families from Israel. Cold Spring Harb Symp Quant Biol. 2002;67:333–337. doi: https://doi.org/10.1101/sqb.2002.67.333
9. Perez-Riera AR, Barbosa-Barros R, de Rezende Barbosa MPC, et al. Catecholaminergic polymorphic ventricular tachycardia, an update. Ann Noninvasive Electrocardiol. 2018;23(4):e12512. doi: https://doi.org/10.1111/anec.12512
10. Roston TM, Yuchi Z, Kannankeril PJ, et al. The clinical and genetic spectrum of catecholaminergic polymorphic ventricular tachycardia: Findings from an international multicentre registry. Europace. 2018;20(3):541–547. doi: https://doi.org/10.1093/europace/euw389
11. Ohno S, Hasegawa K, Horie M. Gender differences in the inheritance mode of RYR2 mutations in catecholaminergic polymorphic ventricular tachycardia patients. PLoS One. 2015;10(6):e0131517. doi: https://doi.org/10.1371/journal.pone.0131517
12. Steinberg C, Roston TM, van der Werf C, et al. RYR2- ryanodinopathies: from calcium overload to calcium deficiency. Europace. 2023;25(6):euad156. doi: https://doi.org/10.1093/europace/euad156
13. Lanner JT, Georgiou DK, Joshi AD, Hamilton SL. Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Symp Quant Biol. 2010;2(11):a003996. doi: https://doi.org/10.1101/cshperspect.a003996
14. Morano I. The Contractile Machines of the Heart. Adv Exp Med Biol. 2024;1441:417–433. doi: https://doi.org/10.1007/978-3-031-44087-8_21
15. Priori SG, Mazzanti A, Santiago DJ, et al. Precision Medicine in Catecholaminergic Polymorphic Ventricular Tachycardia: JACC Focus Seminar 5/5. J Am Coll Cardiol. 2021;77(20):2592–2612. doi: https://doi.org/10.1016/j.jacc.2020.12.073
16. Xiong J, Liu X, Gong Y, et al. Pathogenic mechanism of a catecholaminergic polymorphic ventricular tachycardia causingmutation in cardiac calcium release channel RyR2. J Mol Cell Cardiol. 2018;117:26–35. doi: https://doi.org/10.1016/j.yjmcc.2018.02.014
17. Gillis AM, Dobrev D. Targeting the RyR2 to Prevent Atrial Fibrillation. Circ Arrhythm Electrophysiol. 2022;15(10):e011514. doi: https://doi.org/10.1161/circep.122.011514
18. Ormerod JOM, Ormondroyd E, Li Y, et al. Provocation Testing and Therapeutic Response in a Newly Described Channelopathy: RyR2 Calcium Release Deficiency Syndrome. Circ Genom Precis Med. 2022;15(1):e003589. doi: https://doi.org/10.1161/circgen.121.003589
19. Roston TM, Wei J, Guo W, et al. Clinical and Functional Characterization of Ryanodine Receptor 2 Variants Implicated in Calcium-Release Deficiency Syndrome. JAMA Cardiol. 2022;7(1): 84–92. doi: https://doi.org/10.1001/jamacardio.2021.4458
20. Sleiman Y, Lacampagne A, Meli AC. “Ryanopathies” and RyR2 dysfunctions: can we further decipher them using in vitro human disease models? Cell Death Dis. 2021;12(11):1041. doi: https://doi.org/10.1038/s41419-021-04337-9
21. Medeiros-Domingo A, Bhuiyan ZA, Tester DJ, et al. The RYR2- Encoded Ryanodine Receptor/Calcium Release Channel in Patients Diagnosed Previously With Either Catecholaminergic Polymorphic Ventricular Tachycardia or Genotype Negative, Exercise-Induced Long QT Syndrome. A Comprehensive Open Reading Frame Mutational Analysis. J Am Coll Cardiol. 2009;54(22):2065–2074. doi: https://doi.org/10.1016/j.jacc.2009.08.022
22. Kapplinger JD, Pundi KN, Larson NB, et al. Yield of the RYR2 Genetic Test in Suspected Catecholaminergic Polymorphic Ventricular Tachycardia and Implications for Test Interpretation. Circ Genom Precis Med. 2018;11(2):e001424. doi: https://doi.org/10.1161/CIRCGEN.116.001424
23. Kapplinger JD, Tester DJ, Ackerman MJ. Response by Kapplinger et al to Letter Regarding Article, “Yield of the RYR2 Genetic Test in Suspected Catecholaminergic Polymorphic Ventricular Tachycardia and Implications for Test Interpretation”. Circ Genom Precis Med. 2018;11(5):e002176. doi: https://doi.org/10.1161/CIRCGEN.118.002176
24. Ng K, Titus EW, Lieve KV, et al. An International Multicenter Evaluation of Inheritance Patterns, Arrhythmic Risks, and Underlying Mechanisms of CASQ2-Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation. 2020;142(10):932–947. doi: https://doi.org/10.1161/circulationaha.120.045723
25. Кульбачинская Е.К., Березницкая В.В. CASQ2: клинико-генетические особенности катехоламинергической полиморфной желудочковой тахикардии в трех семьях // Альманах клинической медицины. — 2023. — Т. 51. — № 3. — С. 192–199. — doi: https://doi.org/10.18786/2072-0505-2023-51-022
26. Webster G, Aburawi EH, Chaix MA, et al. Life-threatening arrhythmias with autosomal recessive TECRL variants. Europace. 2021;23(5): 781–788. doi: https://doi.org/10.1093/europace/euaa376
27. Xie L, Hou C, Jiang X, et al. A compound heterozygosity of Tecrl gene confirmed in a catecholaminergic polymorphic ventricular tachycardia family. Eur J Med Genet. 2019;62(7):103631. doi: https://doi.org/10.1016/j.ejmg.2019.01.018
28. Moscu-Gregor A, Marschall C, Müntjes C, et al. Novel variants in TECRL cause recessive inherited CPVT type 3 with severe and variable clinical symptoms. J Cardiovasc Electrophysiol. 2020;31(6): 1527–1535. doi: https://doi.org/10.1111/jce.14446
29. Devalla HD, Gélinas R, Aburawi EH, et al. TECRL, a new life-threatening inherited arrhythmia gene associated with overlapping clinical features of both LQTS and CPVT. EMBO Mol Med. 2016;8(12):1390–1408. doi: https://doi.org/10.15252/emmm.201505719
30. Seidlmayer LK, Riediger F, Pagonas N, et al. Description of a novel RyR2 mutation in a juvenile patient with symptomatic catecholaminergic polymorphic ventricular tachycardia in sleep and during exercise: A case report 11 Medical and Health Sciences 1102 Cardiorespiratory Medicine and Haematology. J Med Case Rep. 2018;12(1):298. doi: https://doi.org/10.1186/s13256-018-1825-6
31. Pflaumer A, Davis AM. An Update on the Diagnosis and Management of Catecholaminergic Polymorphic Ventricular Tachycardia. Heart Lung Circ. 2019;28(3):366–369. doi: https://doi.org/10.1016/j.hlc.2018.10.016
32. Vacanti G, Maragna R, Priori SG, Mazzanti A. Genetic causes of sudden cardiac death in children: inherited arrhythmogenic diseases. Curr Opin Pediatr. 2017;29(5):552–559. doi: https://doi.org/10.1097/MOP.0000000000000537
33. Roston TM, Vinocur JM, Maginot KR, et al. Catecholaminergic Polymorphic Ventricular Tachycardia in Children: Analysis of Therapeutic Strategies and Outcomes from an International Multicenter Registry. Circ Arrhythm Electrophysiol. 2015;8(3): 633–642. doi: https://doi.org/10.1161/CIRCEP.114.002217
34. Zeppenfeld K, Tfelt-Hansen J, de Riva M, et al. Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J. 2022;43(40): 3997–4126. doi: https://doi.org/10.1093/eurheartj/ehac262
35. Giordano U, Di Piazza MC, Bonomo V, et al. Catecholaminergic polymorphic ventricular tachycardia identified by 24 hours ecg monitor. Acta Med Mediterr. 2013;29(3):425–427.
36. Marjamaa A, Hiippala A, Arrhenius B, et al. Intravenous epinephrine infusion test in diagnosis of catecholaminergic polymorphic ventricular tachycardia. J Cardiovasc Electrophysiol. 2012;23(2):194–199. doi: https://doi.org/10.1111/j.1540-8167.2011.02188.x
37. Ковалёв И.А., Соловьёв В.М., Березницкая В.В. и др. Синдром недостаточности высвобождения кальция — редкий вариант катехоламинергической полиморфной желудочковой тахикардии // Педиатрия. Журнал им. Г.Н. Сперанского. — 2023. — Т. 102. — № 6. — С. 195–201. — doi: https://doi.org/10.24110/003-403X-2023-102-6-195-201
38. Moore JP. Slow and steady or fast and furious? Sinus node dysfunction in catecholaminergic polymorphic ventricular tachycardia. J Cardiovasc Electrophysiol. 2019;30(10):1930–1931. doi: https://doi.org/10.1111/jce.14041
39. Miyata K, Ohno S, Itoh H, Horie M. Bradycardia is a specific phenotype of catecholaminergic polymorphic ventricular tachycardia induced by RYR2 mutations. Intern Med. 2018;57(13):1813–1817. doi: https://doi.org/10.2169/internalmedicine.9843-17
40. Veith M, El-Battrawy I, Roterberg G, et al. Long-Term FollowUp of Patients with Catecholaminergic Polymorphic Ventricular Arrhythmia. J Clin Med. 2020;9(4):903. doi: https://doi.org/10.3390/jcm9040903
41. Brunetti ND, Pellegrino PL, D’Arienzo G, et al. Catecholaminergic polymorphic ventricular tachycardia associated with sinus node dysfunction and junctional rhythm: Case report and literature review. J Electrocardiol. 2016;49(6):940–943. doi: https://doi.org/10.1016/j.jelectrocard.2016.07.024
42. Lawrenz W, Krogmann ON, Wieczorek M. Complex atrial arrhythmias as first manifestation of catecholaminergic polymorphic ventricular tachycardia: an unusual course in a patient with a new mutation in ryanodine receptor type 2 gene. Cardiol Young. 2014;24(4):741–744. doi: https://doi.org/10.1017/S1047951113001091
43. Lieve KVV, Verhagen JMA, Wei J, et al. Linking the heart and the brain: Neurodevelopmental disorders in patients with catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm. 2019;16(2):220–228. doi: https://doi.org/10.1016/j.hrthm.2018.08.025
44. Березницкая В.В., Кульбачинская Е.К., Школьникова М.А. Особенности клинических проявлений и эффективность антиаритмической терапии у больных с катехоламинергической полиморфной желудочковой тахикардией // Вестник аритмологии. — 2021. — Т. 28. — № 4. — С. 62–69. — doi: https://doi.org/10.35336/va-2021-4-62-69
45. Кульбачинская Е.К., Березницкая В.В. Лечение катехоламинергической полиморфной желудочковой тахикардии // Вопросы современной педиатрии. — 2024. — Т. 23. —№ 2. — С. 63–70. — doi: https://doi.org/10.15690/vsp.v23i2.2740
46. Nozaki Y, Kato Y, Uike K, et al. Co-Phenotype of Left Ventricular Non-Compaction Cardiomyopathy and Atypical Catecholaminergic Polymorphic Ventricular Tachycardia in Association With R169Q, a Ryanodine Receptor Type 2 Missense Mutation. Circ J. 2020; 84(2):226–234. doi: https://doi.org/10.1253/circj.CJ-19-0720
47. Roston TM, Guo W, Krahn AD, et al. A novel RYR2 loss-offunction mutation (I4855M) is associated with left ventricular non-compaction and atypical catecholaminergic polymorphic ventricular tachycardia. J Electrocardiol. 2017;50(2):227–233. doi: https://doi.org/10.1016/j.jelectrocard.2016.09.006
48. Pérez Díaz P, Jurado Román A, Moreno Reig Á, et al. Polymorphic ventricular tachycardia and non-compacted myocardium: A new genetic variant? Revista Colombiana de Cardiologia. 2020;27(6):597–601. doi: https://doi.org/10.1016/j.rccar.2019.09.008
49. Ni M, Li Y, Wei J, et al. Increased Ca(2+) Transient Underlies RyR2-Related Left Ventricular Noncompaction. Circ Res. 2023;133(2): 177–192. doi: https://doi.org/10.1161/circresaha.123.322504
50. Duan H, Lu Y, Yan S, et al. A delayed diagnosis of catecholaminergic polymorphic ventricular tachycardia with a mutant of RYR2 at c.7580T>G for 6 years in a 9-year-old child. Medicine (Baltimore). 2018;97(16):e0368. doi: https://doi.org/10.1097/MD.0000000000010368
51. van der Werf C, Wilde AAM. Ventricular Tachycardias in Catecholaminergic Cardiomyopathy (Catecholaminergic Polymorphic Ventricular Tachycardia). In: Cardiac Electrophysiology: From Cell to Bedside. Elsevier; 2018. pp. 850–857.
52. Ma MG, Liu XR, Wu Y, et al. RYR2 Mutations Are Associated With Benign Epilepsy of Childhood With Centrotemporal Spikes With or Without Arrhythmia. Front Neurosci. 2021;15:629610. doi: https://doi.org/10.3389/fnins.2021.629610
53. Yap SM, Smyth S. Ryanodine receptor 2 (RYR2) mutation: A potentially novel neurocardiac calcium channelopathy manifesting as primary generalised epilepsy. Seizure. 2019;67:11–14. doi: https://doi.org/10.1016/j.seizure.2019.02.017
54. Hu J, Gao X, Chen L, et al. A novel mutation in ryanodine receptor 2 (RYR2) genes at c.12670G>T associated with focal epilepsy in a 3-year-old child. Front Pediatr. 2022;10:1022268. doi: https://doi.org/10.3389/fped.2022.1022268
55. Roston TM, Sanatani S. Beyond the exercise stress test: Does the cardiac ryanodine receptor affect intellectual function? Heart Rhythm. 2019;16(2):229–230. doi: https://doi.org/10.1016/j.hrthm.2018.09.003
56. Le Tanno P, Folacci M, Revilloud J, et al. Characterization of LossOf-Function KCNJ2 Mutations in Atypical Andersen Tawil Syndrome. Front Genet. 2021;12:773177. doi: https://doi.org/10.3389/fgene.2021.773177
57. Inoue YY, Aiba T, Kawata H, et al. Different responses to exercise between Andersen–Tawil syndrome and catecholaminergic polymorphic ventricular tachycardia. Europace. 2018;20(10): 1675–1682. doi: https://doi.org/10.1093/europace/eux351
58. Kimura H, Zhou J, Kawamura M, et al. Phenotype variability in patients carrying KCNJ2 mutations. Circ Cardiovasc Genet. 2012;5(3):344–353. doi: https://doi.org/10.1161/CIRCGENETICS.111.962316
59. Blich M, Marai I, Suleiman M, et al. Electrocardiographic comparison of ventricular premature complexes during exercise test in patients with CPVT and healthy subjects. Pacing Clin Electrophysiol. 2015;38(3):398–402. doi: https://doi.org/10.1111/pace.12574
60. Ozawa J, Ohno S, Fujii Y, et al. Differential diagnosis between catecholaminergic polymorphic ventricular tachycardia and long QT syndrome type 1 — Modified schwartz score. Circ J. 2018;82(9): 2269–2276. doi: https://doi.org/10.1253/circj.CJ-17-1032
61. Crotti L, Spazzolini C, Tester DJ, et al. Calmodulin mutations and life-threatening cardiac arrhythmias: Insights from the International Calmodulinopathy Registry. Eur Heart J. 2019;40(35):2964–2975. doi: https://doi.org/10.1093/eurheartj/ehz311
62. Tanaka Y, Kawabata M, Scheinman MM, Hirao K. Catecholaminergic Polymorphic Ventricular Tachycardia with QT Prolongation. Pacing Clin Electrophysiol. 2015;38(12):1499–1502. doi: https://doi.org/10.1111/pace.12735
Рецензия
Для цитирования:
Кульбачинская Е.К., Березницкая В.В. Диагностика катехоламинергической полиморфной желудочковой тахикардии. Вопросы современной педиатрии. 2024;23(4):213-219. https://doi.org/10.15690/vsp.v23i4.2773
For citation:
Kulbachinskaya E.K., Bereznitskaya V.V. Diagnosis of Catecholaminergic Polymorphic Ventricular Tachycardia. Current Pediatrics. 2024;23(4):213-219. (In Russ.) https://doi.org/10.15690/vsp.v23i4.2773