Preview

Current Pediatrics

Advanced search

Arrhythmias in Children with Acute Respiratory Viral Infections: Prevalence and Causes

https://doi.org/10.15690/vsp.v23i4.2782

Abstract

The article presents literature review about arrhythmias in children with acute respiratory viral infections (ARVI). The search was carried out in such databases as PubMed, CyberLeninka, RSCI, etc. ARVI is the most common infectious disease in children and adults, and it can have severe course and various complications. Arrhythmias can be frequently revealed in children with ARVI, and most of them are transient. Life-threatening cardiac rhythm and conduction disorders (CRCD) may occur more rarely, especially in severe cases. Knowledge and interest in the pathophysiology of viral infections have increased significantly, including CRCD risk factors in ARVI, thanks to the data obtained during the analysis of COVID-19 clinical course and outcome. This review summarizes and analyzes data on CRCD prevalence and arrhythmogenesis causes in ARVI.

About the Authors

Sabina Kh. Israfilova
Children’s City Hospital № 5 named after N.F. Filatov
Russian Federation

Moscow


Disclosure of interest:

Not declared. 



Tatiana K. Kruchina
Saint Petersburg State Pediatric Medical University
Russian Federation

Saint Petersburg


Disclosure of interest:

Not declared. 



Gennadiy A. Novik
Saint Petersburg State Pediatric Medical University
Russian Federation

Saint Petersburg


Disclosure of interest:

Not declared. 



References

1. Ostrye respiratornye virusnye infektsii u vzroslykh: Clinical guidelines. Ministry of Health of Russia; 2021. 44 p. (In Russ). Доступно по: https://cr.minzdrav.gov.ru/schema/724_1?ysclid=lzn7p3awra660963760. Ссылка активна на 10.08.2024.

2. Ostraya respiratornaya virusnaya infektsiya (ORVI): Clinical guidelines. Ministry of Health of Russia; 2022. — 42 p. (In Russ). Доступно по: https://cr.minzdrav.gov.ru/recomend/25_2?ysclid=lzn7x1u6a9143920809. Ссылка активна на 10.08.2024.

3. Kirichenko AA. Acute respiratory viral infections and heart. Consilium Medicum. 2020;22(5):22–27. (In Russ). doi: https://doi.org/10.26442/20751753.2020-5.200136

4. Bhattacharya S, Agarwal S, Shrimali NM, Guchhait P. Interplay between hypoxia and inflammation contributes to the progression and severity of respiratory viral diseases. Mol Aspects Med. 2021;81:101000. doi: https://doi.org/10.1016/j.mam.2021.101000

5. Beinart R, Morganti K, Ruskin J, et al. H1N1 influenza A virus induced atrioventricular block. J Cardiovasc Electrophysiol. 2011;22(6):711–713. doi: https://doi.org/10.1111/j.1540-8167.2010.01931.x

6. Oulego-Erroz I, de Castro-Vecino P, Ocaña-Alcober C, et al. Complete atrioventricular block associated with respiratory syncytial virus: Presentation of a case and a literature review. An Pediatr (Engl Ed). 2021;94(6):417–419. doi: https://doi.org/10.1016/j.anpede.2020.06.013

7. Rivera-Guzmán N, Del Olmo-Arroyo F, Robles-Arías CM, et al. Transient AV Block as a Hemodynamic Complication of the Influenza A Virus: A Case Report. P R Health Sci J. 2016;35(3):173–175.

8. Samuel S, Friedman RA, Sharma C, et al. Incidence of arrhythmias and electrocardiographic abnormalities in symptomatic pediatric patients with PCR-positive SARS-CoV-2 infection, including drug-induced changes in the corrected QT interval. Heart Rhythm. 2020;17(11):1960–1966. doi: https://doi.org/10.1016/j.hrthm.2020.06.033

9. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–1069. doi: https://doi.org/10.1001/jama.2020.1585

10. Guo H, Shen Y, Wu N, et al. Myocardial injury in severe and critical coronavirus disease 2019. J Card Surg. 2021;36:82–88. doi: https://doi.org/10.1111/jocs.15164

11. Liao SC, Shao SC, Cheng CW, et al. Incidence rate and clinical impacts of arrhythmia following COVID-19: a systematic review and meta-analysis of 17,435 patients. Crit Care. 2020;24(1):1–7. doi: https://doi.org/10.1186/s13054-020-03368-6

12. Mountantonakis SE, Saleh M, Fishbein J, et al. Atrial fibrillation is an independent predictor for in-hospital mortality in patients admitted with SARS-CoV-2 infection. Heart Rhythm. 2021;18(4):501–507. doi: https://doi.org/10.1016/j.hrthm.2021.01.018

13. Heching HJ, Goyal A, Harvey B, et al. Electrocardiographic changes in non-hospitalised children with COVID-19. Cardiol Young. 2022;32(12):1910–1916. doi: https://doi.org/10.1017/S1047951121005138

14. Van Hersh A, Jawad K, Feygin Y, et al. Significance of electrocardiogram abnormalities in children presenting to the emergency department with acute COVID-19 infection. Am J Emerg Med. 2023;71:195–199. doi: https://doi.org/10.1016/j.ajem.2023.06.041

15. Souza Filho CAO, Lima Junior E. Predictors of in-hospital death in children with myocardial injury related to COVID-19. J Infect Dev Ctries. 2024;18(3):355–361. doi: https://doi.org/10.3855/jidc.18582

16. L ee PY, Garan H, Wan EY, et al. Cardiac arrhythmias in viral infections. J Interv Card Electrophysiol. 2023;66(8):1939–1953. doi: https://doi.org/10.1007/s10840-023-01525-9

17. Romanov YuA. SARS-CoV-2, COVID-19 and cardiovascular complications from the position of vascular endothelium. Russian Cardiology Bulletin. 2022;17(1):21–28. (In Russ). doi: https://doi.org/10.17116/Cardiobulletin20221701121

18. Nabeh OA, Helaly MM, Menshawey R, et al. Contemporary approach to understand and manage COVID-19-related arrhythmia. Egypt Heart J. 2021;73(1):76. doi: https://doi.org/10.1186/s43044-021-00201-5

19. Haddad W, Agoudemous M, Basnet S. Prolonged sinoatrial block in an infant with respiratory syncytial viral bronchiolitis. Pediatr Cardiol. 2012;33(7):1203–1205. doi: https://doi.org/10.1007/s00246-012-0250-7

20. Lucerna A, Lee J, Espinosa J. Syncope and Influenza B: A Case of an Arresting Association. Case Rep Emerg Med. 2018: 2018;1853473. doi: https://doi.org/10.1155/2018/1853473

21. Kawashima H, Inagaki N, Nakayama T, et al. Cardiac Complications Caused by Respiratory Syncytial Virus Infection: Questionnaire Survey and a Literature Review. Glob Pediatr Health. 2021;8:2333794X211044114. doi: https://doi.org/10.1177/2333794X211044114

22. Ukimura A, Izumi T, Matsumori A. A national survey on myocarditis associated with the 2009 influenza A (H1N1) pandemic in Japan. Circ J. 2010;74(10):2193–2199. doi: https://doi.org/10.1253/circj.cj-10-0452

23. Vasudeva R, Bhatt P, Lilje C, et al. Trends in acute myocarditis related pediatric hospitalizations in the United States, 2007–2016. Am J Cardiol. 2021;149:95102. doi: https://doi.org/10.1016/j.amjcard.2021.03.019

24. García de Guadiana-Romualdo L, Morell-García D, RodríguezFraga O, et al. Cardiac troponin and COVID-19 severity: Results from BIOCOVID study. Eur J Clin Invest. 2021;51(6):e13532. doi: https://doi.org/10.1111/eci.13532

25. Tersalvi G, Vicenzi M, Calabretta D, et al. Elevated troponin in patients with coronavirus disease 2019: possible mechanisms. J Card Fail. 2020;26:470–475. doi: https://doi.org/10.1016/j.cardfail.2020.04.009

26. Ammirati E, Lupi L, Palazzini M, et al. Prevalence, Characteristics, and Outcomes of COVID-19-Associated Acute Myocarditis. Circulation. 2022;145(15):1123–1139. doi: https://doi.org/10.1161/CIRCULATIONAHA.121.056817

27. Halushka MK, Vander Heide RS. Myocarditis is rare in COVID-19 autopsies: cardiovascular findings across 277 postmortem examinations. Cardiovasc Pathol. 2021;50:107300. doi: https://doi.org/10.1016/j.carpath.2020.107300

28. Arslan SY, Bal ZS, Bayraktaroglu S, et al. Cardiac Assessment in Children with MIS-C: Late Magnetic Resonance Imaging Features. Pediatr Cardiol. 2023;44(1):44–53. doi: https://doi.org/10.1007/s00246-022-02977-y

29. Gargano JW, Wallace M, Hadler SC, et al. Use of mRNA COVID-19 Vaccine After Reports of Myocarditis Among Vaccine Recipients: Update from the Advisory Committee on Immunization Practices — United States, June 2021. MMWR Morb Mortal Wkly Rep. 2021;70(27):977–982. doi: https://doi.org/10.15585/mmwr.mm7027e2

30. Kantemirova MG, Degtyareva EA, Tsitsilashvili MYu, et al. Geterofil’nye antikardial’nye antitela i serdechno-sosudistye izmeneniya u detei s virusnymi infektsiyami. International Journal of Interventional Cardioangiology. 2008:(16);49–54. (In Russ).

31. Lazzerini PE, Boutjdir M, Capecchi PL. COVID-19, arrhythmic risk, and inflammation: mind the gap! Circulation. 2020;142(1): 7–9. doi: https://doi.org/10.1161/CIRCULATIONAHA.120.047293

32. Madjid M, Connolly AT, Nabutovsky Y, et al. Effect of high influenza activity on risk of ventricular arrhythmias requiring therapy in patients with implantable cardiac defibrillators and cardiac resynchronization therapy defibrillators. Am J Cardiol. 2019;124(1): 44–50. doi: https://doi.org/10.1016/j.amjcard.2019.04.011

33. Warren-Gash C, Blackburn R, Whitaker H, et al. Laboratoryconfirmed respiratory infections as triggers for acute myocardial infarction and stroke: a self-controlled case series analysis of national linked datasets from Scotland. Eur Respir J. 2018;51(3):1701794. doi: https://doi.org/10.1183/13993003.01794-2017

34. Kruchina TK, Egorov DF. Supraventrikulyarnye takhikardii u detei: klinika, diagnostika, metody lecheniya. St. Petersburg: Chelovek; 2011. 356 p. (In Russ).

35. Alen NV, Parenteau AM, Sloan RP, et al. Heart rate variability and circulating inflammatory markers in midlife. Brain Behav Immun Health. 2021;15:100273. doi: https://doi.org/10.1016/j.bbih.2021.100273

36. Borovikova LV, Ivanova S, Zhang M, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405(6785):458–462. doi: https://doi.org/10.1038/35013070

37. Williams DWP, Koenig J, Carnevali L, et al. Heart rate variability and inflammation: a meta-analysis of human studies. Brain Behav Immun. 2019;80:219–226. doi: https://doi.org/10.1016/j.bbi.2019.03.009

38. Bonaz B, Sinniger V, Pellissier S. Targeting the cholinergic antiinflammatory pathway with vagus nerve stimulation in patients with Covid-19? Bioelectron Med. 2020;6(1):15. doi: https://doi.org/10.1186/s42234-020-00051-7

39. Hlypovka YN, Ploskireva AA, Yatsyshina SB. Neurovegetative dysfunction in the period of adaptation-compensatory reactions tension during acute respiratory infections in children and its therapeutic correction. Pediatria. 2017;96(4):28–34. (In Russ). doi: https://doi.org/10.24110/0031-403X-2017-96-4-28-34

40. Shen MJ, Zipes DP. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res. 2014;114(6):1004– 1021. doi: https://doi.org/10.1161/CIRCRESAHA.113.302549

41. Frigy A, Csiki E, Caraşca C, et al. Autonomic influences related to frequent ventricular premature beats in patients without structural heart disease. Medicine (Baltimore). 2018;97(28):e11489. doi: https://doi.org/10.1097/MD.0000000000011489

42. Mikhailova EV. Astenovegetativnyi sindrom u detei. posle perenesennykh infektsionnykh zabolevanii. Lechaschi vrach. 2009;(8):68–71. (In Russ).

43. Shirshov YuA, Govorin AN. Autonomic disorders in patients with A(H1N1) virus. Sibirskii meditsinskii zhurnal. 2011;(5):41–44. (In Russ).

44. Ahmed JO, Ahmad SA, Hassan MN, et al. Post COVID-19 neurological complications; a meta-analysis. Ann Med Surg (Lond). 2022;76:103440. doi: https://doi.org/10.1016/j.amsu.2022.103440

45. Kanjwal K, Jamal S, Kichloo A, Grubb BP. New-onset Postural Orthostatic Tachycardia Syndrome Following Coronavirus Disease 2019 Infection. J Innov Card Rhythm Manag. 2020;11(11): 4302–4304. doi: https://doi.org/10.19102/icrm.2020.111102

46. Panfoli I. Potential role of endothelial cell surface ectopic redox complexes in COVID-19 disease pathogenesis. Clin Med (Lond). 2020;20(5):e146-e147. doi: https://doi.org/10.7861/clinmed.2020-0252

47. Park KH, Park WJ. Endothelial Dysfunction: Clinical Implications in Cardiovascular Disease and Therapeutic Approaches. J Korean Med Sci. 2015;30(9):1213–1225. doi: https://doi.org/10.3346/jkms.2015.30.9.1213

48. Iravanian S, Dudley SC Jr. The renin-angiotensin-aldosterone system (RAAS) and cardiac arrhythmias. Heart Rhythm. 2008;5(6 Suppl):S12–S17. doi: https://doi.org/10.1016/j.hrthm.2008.02.025

49. Mauri T, Spinelli E, Scotti E, et al. Potential for Lung Recruitment and Ventilation-Perfusion Mismatch in Patients With the Acute Respiratory Distress Syndrome From Coronavirus Disease 2019. Crit Care Med. 2020;48(8):1129–1134. doi: https://doi.org/10.1097/CCM.0000000000004386

50. Kanagala R, Murali NS, Friedman PA, et al. Obstructive sleep apnea and the recurrence of atrial fibrillation. Circulation. 2003;107(20):2589–2594. doi: https://doi.org/10.1161/01.CIR.0000068337.25994.21

51. Kourie JI. Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol Cell Physiol. 1998;275(1): 1–24. doi: https://doi.org/10.1152/ajpcell.1998.275.1.C1

52. Zima AV, Blatter LA. Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res. 2006;71(2):310–321. doi: https://doi.org/10.1016/j.cardiores.2006.02.019

53. Hammarström AK, Gage PW. Hypoxia and persistent sodium current. Eur Biophys J. 2002;31(5):323–330. doi: https://doi.org/10.1007/s00249-002-0218-2

54. Vishnevskij VI, Panina JN, Vishnevskij MV. The effect of electrolyte deficiency on cardiac arrhythmias against the background of a new coronavirus infection. Challenges in Modern Medicine. 2022;45(1):55–64. (In Russ). doi: https://doi.org/10.52575/2687-0940-2022-45-1-55-64

55. Lv W, Wu M, Ren Y, et al. Coronavirus Disease 2019: Coronaviruses and Kidney Injury. J Urol. 2020;204(5):918–925. doi: https://doi.org/10.1097/JU.0000000000001289

56. Hunt RH, East JE, Lanas A, et al. COVID-19 and Gastrointestinal Disease: Implications for the Gastroenterologist. Dig Dis. 2021;39(2):119–139. doi: https://doi.org/10.1159/000512152

57. Berni A, Malandrino D, Parenti G, et al. Hyponatremia, IL-6, and SARS-CoV-2 (COVID-19) infection: may all fit together? J Endocrinol Invest. 2020;43(8):1137–1139. doi: https://doi.org/10.1007/s40618-020-01301-w

58. Gopinathannair R, Merchant FM, Lakkireddy DR, et al. COVID-19 and cardiac arrhythmias: a global perspective on arrhythmia characteristics and management strategies. J Interv Card Electrophysiol. 2020;59(2):329–336. doi: https://doi.org/10.1007/s10840-020-00789-9

59. W u CI, Postema PG, Arbelo E, et al. SARS-CoV-2, COVID-19, and inherited arrhythmia syndromes. Heart Rhythm. 2020;17(9): 1456–1462. doi: https://doi.org/10.1016/j.hrthm.2020.03.024


Review

For citations:


Israfilova S.Kh., Kruchina T.K., Novik G.A. Arrhythmias in Children with Acute Respiratory Viral Infections: Prevalence and Causes. Current Pediatrics. 2024;23(4):220-228. (In Russ.) https://doi.org/10.15690/vsp.v23i4.2782

Views: 470


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)