Preview

Current Pediatrics

Advanced search

Molecular and Genetic Basis of Hereditary Connective-Tissue Diseases Accompanied by Frequent Fractures

https://doi.org/10.15690/vsp.v15i2.1536

Abstract

Frequent bone fractures in infancy require the elimination of a large number (> 100) of genetic disorders. The modern diagnostic method of hereditary diseases characterized by debilitating course is a new generation sequencing. The article presents the results of molecular-genetic study conducted in 18 patients with clinical symptoms of connective tissue disorders. 10 (56%) patients had mutations in the genes encoding type I collagen chains, leading to the development of osteogenesis imperfecta, 5 (28%) — mutations in IV and V type collagen genes that are responsible for the development of Ehlers-Danlos syndrome. 3 (17%) patients had mutations in the gene encoding fibrillin-1 protein, deficiency of which is manifested by Marfan syndrome. However, the correlation between patient's phenotype and discovered mutations in the investigated gene is established not in all cases.

About the Authors

G. T. Yakhyaeva
Scientific Centre of Children’s Health, Moscow, Russian Federation
Russian Federation


L. S. Namazova-Baranova
Scientific Centre of Children’s Health, Moscow, Russian Federation I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation Pirogov Russian National Research Medical University, Moscow, Russian Federation
Russian Federation


T. V. Margieva
Scientific Centre of Children’s Health, Moscow, Russian Federation I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
Russian Federation


N. V. Zhurkova
Scientific Centre of Children’s Health, Moscow, Russian Federation
Russian Federation


A. A. Pushkov
Scientific Centre of Children’s Health, Moscow, Russian Federation
Russian Federation


K. V. Savostyanov
Scientific Centre of Children’s Health, Moscow, Russian Federation
Russian Federation


References

1. Мальцев С. В., Мансурова Г. Ш. Современные аспекты остеопороза у детей // Практическая медицина. — 2015. — № 7(92). — С. 15–21. [Maltsev SV, Mansurova GS. Modern aspects of osteoporosis in children. Prakticheskaya meditsina. 2015;(7(92)):15–21. (In Russ).]

2. Basel D, Steiner RD. Osteogenesis imperfecta: recent findings shed new light on this once well-understood condition. Genet Med. 2009;11(6):375–385. doi: 10.1097/GIM.0b013e3181a1ff7b.

3. Творогова Т. М., Воробьёва А. С. Недифференцированная дисплазия соединительной ткани с позиции дизэлементоза у детей и подростков // Русский медицинский журнал. — 2012. — Т. 20 — № 24. — С. 1215–1221. [Tvorogova TM, Vorobeva AS. Nedifferentsirovannaya displaziya soedinitel'noi tkani s pozitsii dizelementoza u detei i podrostkov. Russkii meditsinskii zhurnal. 2012;20(24):1215–1221. (In Russ).]

4. Greeley CS, Donaruma-Kwoh M, Vettimattam M, et al. Fractures at diagnosis in infants and children with Osteogenesis Imperfecta. J Pediatr Orthop. 2013;33(1):32–36. doi: 10.1097/ BPO.0b013e318279c55d.

5. Bronicki LM, Stevenson RE, Spranger JW. Beyond osteogenesis imperfecta: Causes of fractures during infancy and childhood. Am J Med Genet C Semin Med Genet. 2015;169(4):314–327. doi: 10.1002/ajmg. c.31466.

6. Armon K, Bale P. Identifying heritable connective tissue disorders in childhood. Practitioner. 2012;256(1752):19–23.

7. Murphy-Ryan M, Psychogios A, Lindor NM. Hereditary disorders of connective tissue: A guide to the emerging differential diagnosis. Genet Med. 2010;12(6):344–354. doi: 10.1097/GIM.0b013e3181e074f0.

8. Osteogenesis Imperfecta Variant Database [Internet]. Bone morphogenetic protein 1 [cited 2016 Apr 27]. Available from: https://oi.gene.le.ac.uk.

9. Drera B, Zoppi N, Ritelli M, et al. Diagnosis of vascular Ehlers- Danlos syndrome in Italy: clinical findings and novel COL3A1 mutations. J Dermatol Sci. 2011;64(3):237–240. doi: 10.1016/ j.jdermsci.2011.09.002.

10. Marini JC, Forlino A, Cabral WA, et al. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat. 2007;28(3):209–221. doi: 10.1002/humu.20429.

11. Ke LF, Zheng LW, Xie HH, et al. Molecular diagnosis of a Chinese pedigree with osteogenesis imperfecta type I [(In Chin).]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2009;26(1):50–53. doi: 10.3760/cma. j.issn.1003-9406.2009.01.011.

12. Rauch F, Lalic L, Glorieux FH, et al. Targeted sequencing of a pediatric metabolic bone gene panel using a desktop semiconductor next-generation sequencer. Calcif Tissue Int. 2014;95(4):323–331. doi: 10.1007/s00223-014-9897-9.

13. Pepin M, Atkinson M, Starman BJ, Byers PH. Strategies and outcomes of prenatal diagnosis for osteogenesis imperfecta: a review of biochemical and molecular studies completed in 129 pregnancies. Prenat Diagn. 1997;17(6):559–570. doi: 10.1002/ (sici)1097-0223(199706)17:6<559::aid-pd111>3.0.co;2-g.

14. Lindahl K, Astrom E, Rubin CJ, et al. Genetic epidemiology, prevalence, and genotype-phenotype correlations in the Swedish population with osteogenesis imperfecta. Eur J Hum Genet. 2015;23(8):1042–1050. doi: 10.1038/ejhg.2015.81.

15. Pollitt R, McMahon R, Nunn J, et al. Mutation analysis of COL1A1 and COL1A2 in patients diagnosed with osteogenesis imperfecta type I–IV. Hum Mutat. 2006;27(7):716. doi: 10.1002/humu.9430.

16. Dalgleish R. The Human Collagen Mutation Database 1998. Nucl Aci Res. 1998;26(1):253–255. doi: 10.1093/nar/26.1.253.

17. Malfait F, De Paepe A. Molecular genetics in classic Ehlers- Danlos syndrome. Am J Med Genet C Semin Med Genet. 2005; 139C(1):17–23. doi: 10.1002/ajmg. c.30070.

18. Byers PH. Haploinsufficiency for mutations in type I collagen genes: mechanisms and clinical effects. In: Osteogenesis Imperfecta: A translational approach to brittle bone disease. Ed by Shapiro JR, Byers PH, Glorieux FH, and Sponsellor PD. Elsevier Inc; 2014. p. 125–127.

19. van Dijk FS, Cobben JM, Kariminejad A, et al. Osteogenesis Imperfecta: A review with clinical examples. Mol Syndromol. 2011; 2(1):1–20. doi: 10.1159/000332228.

20. Malfait F, Symoens S, Goemans N, et al. Helical mutations in type I collagen that affect the processing of the amino-propeptide result in an Osteogenesis Imperfecta/Ehlers-Danlos Syndrome overlap syndrome. Orphanet J Rare Dis. 2013;8(1):78. doi: 10.1186/1750-1172-8-78.

21. Cabral WA, Makareeva E, Colige A, et al. Mutations near amino end of alpha1 (I) collagen cause combined osteogenesis imperfecta/Ehlers-Danlos syndrome by interference with N-propeptide processing. J Biol Chem. 2005;280(19):19259–19269. doi: 10.1074/jbc.M414698200.

22. Germain DP. Ehlers-Danlos syndrome type IV. Orphanet J Rare Dis. 2007;2(1):32. doi: 10.1186/1750-1172-2-32.

23. Rose NJ, Mackay K, Byers PH, Dalgleish R. A Gly238Ser substitution in the alpha 2 chain of type I collagen results in osteogenesis imperfecta type III. Hum Genet. 1995;95(2):215–218. doi: 10.1007/bf00209405.

24. Reid DM, Toi A, Silver M, et al. Prenatally diagnosed bowed long bones associated with non-lethal osteogenesis imperfecta. In: Program Nr: 2332 from the 2000 ASHG Annual Meeting. Philadelphia, Pennsylvania; 2000.

25. Halliday DJ, Hutchinson S, Lonie L, et al. Twelve novel FBN1 mutations in Marfan syndrome and Marfan related phenotypes test the feasibility of FBN1 mutation testing in clinical practice. J Med Genet. 2002;39(8):589–593. doi: 10.1136/jmg.39.8.589.

26. Loeys BL, Dietz HC, Braverman AC, et al. The revised Ghent nosology for the Marfan syndrome. J Med Genet. 2010;47(7): 476–485. doi: 10.1136/jmg.2009.072785.

27. Faivre L, Masurel-Paulet A, Collod-Beroud G, et al. Clinical and molecular study of 320 children with Marfan syndrome and related type I fibrillinopathies in a series of 1009 probands with pathogenic FBN1 mutations. Pediatrics. 2009;123(1):391–398. doi: 10.1542/peds.2008-0703.

28. Jost CHA, Greutmann M, Connolly HM, et al. Medical treatment of aortic aneurysms in Marfan syndrome and other heritable conditions. Curr Cardiol Rev. 2014;10(2):161–171. doi: 10.2174/ 1573403x1002140506124902.

29. Horn D, Robinson PN. Progeroid facial features and lipody strophy associated with a novel splice site mutation in the final intron of the FBN1 gene. Am J Med Genet A. 2011;155A(4):721–724. doi: 10.1002/ajmg. a.33905.


Review

For citations:


Yakhyaeva G.T., Namazova-Baranova L.S., Margieva T.V., Zhurkova N.V., Pushkov A.A., Savostyanov K.V. Molecular and Genetic Basis of Hereditary Connective-Tissue Diseases Accompanied by Frequent Fractures. Current Pediatrics. 2016;15(2):175-179. (In Russ.) https://doi.org/10.15690/vsp.v15i2.1536

Views: 1127


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)