POTENTIAL ROLE OF SERUM PERIOSTIN IN THE EARLY DETECTION OF BRONCHIAL ASTHMA IN CHILDREN
https://doi.org/10.15690/vsp.v15i5.1619
Abstract
Respiratory viral infections in infants and preschool children are often accompanied by repeated episodes of wheezing; which is associated with an increased risk of asthma development. Mechanisms of connection between a viral infection and the subsequent development of allergic inflammation in the respiratory tract are insufficiently studied. Unfortunately; despite the existence of such connection; it is difficult to predict the risk occurrence on the basis of clinical symptoms. Determination of nitrogen oxide in the exhaled air; of the number of eosinophils in the peripheral blood and of bronchoalveolar lavage fluid as well as of IgE was suggested as predictors of allergic inflammation in the airways. But these surrogate markers in patients including children with asthma have a moderate diagnostic accuracy. Their use as a marker of airway eosinophilia can cause a significant amount of false-positive and false-negative results. Recent studies have shown that determination of serum periostin more accurately confirms eosinophilic airway inflammation. The possibility to study this marker in different variants of wheezing in children as a possible predictor of asthma development is discussed based on its reliability; stability and a small variation in determination of eosinophilic inflammation in the airways with symptoms of bronchial obstruction.
About the Authors
Nickolai V. SobotyukRussian Federation
Valentina P. Gaponenko
Russian Federation
Sergei V. Bochantsev
Russian Federation
Svetlana A. Golochalova
Russian Federation
Irina V. Sazonova
Russian Federation
Tatiana N. Кharlamova
Russian Federation
References
1. Burr ML, Wat D, Evans C, et al. Asthma prevalence in 1973, 1988 and 2003. Thorax. 2006,61:296–299. doi: 10.1136/thx.2005.045682.
2. Braman SS. The global burden of asthma. Chest. 2006,130 Suppl 1:S4–12. doi: 10.1378/chest.130.1_suppl.4s.
3. Gavett SH, Chen X, Finkelman F, Wills-Karp M. Depletion of murine CD4+ T-lymphocytes prevents antigen-induced airway hyperreactivity and pulmonary eosinophilia. Am J Respir Cell Mol Biol. 1994,10(6):587–593. doi: 10.1165/ajrcmb.10.6.8003337.
4. Lukacs NW, Strieter RM, Chensue SW, Kunkel SL. Interleukin-4 dependent pulmonary eosinophil infiltration in a murine model of asthma. Am J Respir Cell Mol Biol. 1994,10(5):526–532. doi: 10.1165/ajrcmb.10.5.8179915.
5. Robinson DS, Hamid Q, Ying S, et al. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med. 1992 Jan 30,326(5):298–304. doi: 10.1056/NEJM199201303260504.
6. Wenzel S, Wilbraham D, Fuller R, et al. Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet. 2007,370(9596):1422–1431. doi: 10.1016/S0140-6736(07)61600-6.
7. Holgate S, Bisgaard H, Bjermer L, et al. The Brussels Declaration: the need for change in asthma management. Eur Respir J. 2008,32(6):1433–1442. doi: 10.1183/09031936.00053108.
8. A plea to abandon asthma as a disease concept. Lancet. 2006,368:705. doi: 10.1016/S0140-6736(06)69257-X.
9. Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approache. Nat Med. 2012,18(5):716–725. doi: 10.1038/nm.2678.
10. Kobayashi T, Miura T, Haba T, et al. An essential role of mast cells in the development of airway hyperresponsiveness in a murine asthma model. J Immunol. 2000,164(7):3855–3861. doi: 10.4049/jimmunol.164.7.3855.
11. Hallstrand TS, Henderson WR. An update on the role of leukotri-enes in asthma. Curr Opin Allergy Clin Immunol. 2010,10(1):60–66. doi: 10.1097/ACI.0b013e32833489c3.
12. Hall S, Agrawal DK. Key mediators in the immunopathogenesis of allergic asthma. Int Immunopharmacol. 2014,23(1):316–329. doi: 10.1016/j.intimp.2014.05.034.
13. Humbles AA, Lloyd CM, McMillan SJ, et al. A critical role for eosinophils in allergic airways remodeling. Science. 2004,305(5691):1776–1779. doi: 10.1126/science.1100283.
14. Jacobsen EA, Helmers RA, Lee JJ, Lee NA. The expanding role(s) of eosinophils in health and disease. Blood. 2012,120(19):3882–3890. doi: 10.1182/blood-2012-06-330845.
15. Al-Muhsen S, Johnson JR, Hamid Q. Remodeling in asthma. J Allergy Clin Immunol. 2011,128(3):451–462. doi: 10.1016/j.jaci.2011.04.047.
16. Barnes PJ. Biochemical basis of asthma therapy. J Biol Chem. 2011,286(38):32899–32905. doi: 10.1074/jbc.R110.206466.
17. Zhang X, Moilanen E, Kankaanranta H. Enhancement of human eosinophil apoptosis by fluticasone propionate, budesonide, and beclomethasone. Eur J Pharmacol. 2000,406:325–332. doi: 10.1016/S0014-2999(00)00690-7.
18. Park YM, Bochner BS. Eosinophil survival and apoptosis in health and disease. Allergy Asthma Immunol Res. 2010,2(2):87–101. doi: 10.4168/aair.2010.2.2.87.
19. Montuschi P, Peters-Golden ML. Leukotriene modifiers for asthma treatment. Clin Exp Allergy. 2010,40(12):1732–1741. doi: 10.1111/j.1365-2222.2010.03630.x.
20. Martinez FD, Vercelli D. Asthma. Lancet. 2013,382(9901):1360–1372. doi: 10.1016/S0140-6736(13)61536-6.
21. Holgate ST, Polosa R. The mechanisms, diagnosis, and management of severe asthma in adults. Lancet. 2006,368(9537):780–793. doi: 10.1016/S0140-6736(06)69288-X.
22. Moore WC, Bleecker ER, Curran-Everett D, et al. Characterization of the severe asthma phenotype by the National Heart, Lung, and Blood Institute’s Severe Asthma Research Program. J Allergy Clin Immunol. 2007,119(2):405–413. doi: 10.1016/j.jaci.2006.11.639.
23. Lanier B, Bridges T, Kulus M, et al. Omalizumab for the treatment of exacerbations in children with inadequately controlled allergic (IgE-mediated) asthma. J Allergy Clin Immunol. 2009,124(6):1210–1216. doi: 10.1016/j.jaci.2009.09.021.
24. Massanari M, Milgrom H, Pollard S, et al. Adding omalizumab to the therapy of adolescents with persistent uncontrolled moderate: severe allergic asthma. Clin Pediatr (Phila). 2009,48(8):859–865. doi: 10.1177/0009922809339054.
25. Haland G, Carlsen KC, Sandvik L, et al. Reduced lung function at birth and the risk of asthma at 10 years of age. N Engl J Med. 2006,355(16):1682–1689. doi: 10.1056/NEJMoa052885.
26. Аллергия у детей: от теории к практике / Под ред. Л.С. Намазовой-Барановой. — М.: Союз педиатров России, 2010–2011. 668 с. [Allergiya u detei: ot teorii k praktike. Ed by L.S. Namazova-Baranova. Moscow: Soyuz pediatrov Rossii, 2010–2011. 668 p. (In Russ).]
27. Oh CK, Geba GP, Molfino N. Investigational therapeutics targeting the IL-4/IL-13/STAT-6 pathway for the treatment of asthma. Eur Respir Rev. 2010,19:46–54. doi: 10.1183/09059180.00007609.
28. Walsh GM. Emerging drugs for asthma. Expert Opin Emerg Drugs. 2008;13(4):643–53. doi: 10.1517/14728210802591378.
29. Fulkerson PC, Rothenberg ME. Targeting eosinophils in allergy, inflammation and beyond. Nature Reviews Drug Discovery. 2013,12(2):117–129. doi: 10.1038/nrd3838.
30. Flood-Page P, Swenson C, Faiferman I, et al. A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. Am J Respir Crit Care Med. 2007,176(11):1062–1071. doi: 10.1164/rccm.200701-085OC.
31. Haldar P, Brightling CE, Hargadon B, et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med. 2009,360:973–984. doi: 10.1056/NEJMoa0808991.
32. Castro M, Mathur S, Hargreave F, et al. Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebocontrolled study. Am J Respir Crit Care Med. 2011,184(10):1125–1132. doi: 10.1164/rccm.201103-0396OC.
33. Walter DM, McIntire JJ, Berry G, et al. Critical role for IL-13 in the development of allergen-induced airway hyperreactivity. J Immunol. 2001,167(8):4668–75. doi: 10.4049/jimmunol.167.8.4668.
34. De Boever EH, Ashman C, Cahn AP, et al. Efficacy and safety of an anti-IL-13 mAb in patients with severe asthma: a randomized trial. J Allergy Clin Immunol. 2014,133(4):989–996. doi: 10.1016/j.jaci.2014.01.002.
35. Piper E, Brightling C, Niven R, et al. A phase II placebo-controlled study of tralokinumab in moderate-to-severe asthma. Eur Respir J. 2013,41:330–338. doi: 10.1183/09031936.00223411.
36. Wenzel S, Ford L, Pearlman D, et al. Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med. 2013,368:2455–2466. doi: 10.1056/NEJMoa1304048.
37. Levine SJ, Wenzel SE. The role of Th2 immune pathway modulation in the treatment of severe asthma and its phenotypes: Are we getting closer? Ann Intern Med. 2010,152(4):232–237. doi: 10.7326/0003-4819-152-4-201002160-00008.
38. Taube C. Bronchial asthma: is personalized therapy on the horizon? Allergo J Int. 2014,23(7):246–251. doi: 10.1007/s40629-014-0028-y.
39. Takeshita S, Kikuno R, Tezuka K, Amann E. Osteoblastspecific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. Biochem J. 1993,294(1):271–278. doi: 10.1042/bj2940271.
40. Izuhara K, Arima K, Ohta S, et al. Periostin in allergic inflammation. Allergol Int. 2014,63(2):143–151. doi: 10.2332/allergolint.13-RAI-0663.
41. Nair P, Kraft M. Serum periostin as a marker of Th2-dependent eosinophilic airway inflammation. J Allergy Clin Immunol. 2012,130(3):655–656. doi: 10.1016/j.jaci.2012.07.021.
42. Conway SJ, Izuhara K, Kudo Y, et al. The role of periostin in tissue remodeling across health and disease. Cell Mol Life Sci. 2014,71(7):1279–88. doi: 10.1007/s00018-013-1494-y.
43. Gordon ED, Sidhu SS, Wang ZE, et al. A protective role for periostin and TGF- in IgE-mediated allergy and airway hyperresponsiveness. Clin Exp Allergy. 2012,42(1):144–55. doi: 10.1111/j.1365-2222.2011.03840.x.
44. Bentley JK, Chen Q, Hong JY, et al. Periostin is required for maximal airways inflammation and hyperresponsiveness in mice. J Allergy Clin Immunol. 2014,134(6):1433–42. doi: 10.1016/j.jaci.2014.05.029.
45. Kanemitsu Y, Matsumoto H, Mishima M. KiHAC Respiratory Medicine Group. Factors contributing to an accelerated decline in pulmonary function in asthma. Allergol Int. 2014,63(2):181–188. doi: 10.2332/allergolint.13-RA-0670.
46. Yamaguchi Y. Periostin in skin tissue and skin-related diseases. Allergol Int. 2014,63(2):161–170. doi: 10.2332/allergolint.13-RAI-0685.
47. Kim MA, Shin YS, le Pham D, Park HS. Adult asthma biomarkers. Curr Opin Allergy Clin Immunol. 2014,14(1):49–54. doi: 10.1097/ACI.0000000000000028.
48. Blanchard C, Mingler MK, McBride M, et al. Periostin facilitates eosinophil tissue infiltration in allergic lung and esophageal responses. Mucosal Immunol. 2008,1(4):289–296. doi: 10.1038/mi.2008.15.
49. Johansson MW, Annis DS, Mosher DF. (M)(2) integrin-medi-ated adhesion and motility of IL-5-stimulated eosinophils on perios-tin. Am J Respir Cell Mol Biol. 2013,48(4):503–510. doi: 10.1165/rcmb.2012-0150OC.
50. Hanania NA, Wenzel S, Rosen K, et al. Еxploring the effects of omalizumab in allergic asthma: an analysis of biomarkers in the EXTRA study. Am J Respir Crit Care Med. 2013,187(8):804–811. doi: 10.1164/rccm.201208-1414OC.
51. Corren J, Lemanske RF, Hanania NA, et al. Lebrikizumab treatment in adults with asthma. N Engl J Med. 2011,365(12):1088–1098. doi: 10.1056/NEJMoa1106469.
52. Pavord ID, Korn S, Howarth P, et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebocontrolled trial. Lancet. 2012,380(9842):651–659. doi: 10.1016/S0140-6736(12)60988-X.
53. Bel EH, Wenzel SE, Thompson PJ, et al. Oral glucocorticoidsparing effect of mepolizumab in eosinophilic asthma. N Engl J Med. 2014,371(13):1189–1197. doi: 10.1056/NEJMoa1403291.
54. Korevaar DA, Westerhof GA, Wang J, et al. Diagnostic accuracy of minimally invasive markers for detection of airway eosinophilia in asthma: a systematic review and meta-analysis. Lancet Respir Med. 2015,3(4):290–300. doi: 10.1016/S2213-2600(15)00050-8.
55. Matsumoto Н. Serum periostin: a novel biomarker for asthma management. Allergol Int. 2014,63(2):153–160. doi: 10.2332/allergolint.13-RAI-0678.
56. Guiquan J, Erickson RW, Choy DF, et al. Periostin is a systemic biomarker of eosinophilic airway inflammation in asthmatic patients. J Allergy Clin Immunol. 2012,130(3):647–654. doi: 10.1016/j.jaci.2012.06.025.
57. Thomsen SF, van der Sluis S, Stensballe LG, et al. Exploring the association between severe respiratory syncytial virus infection and asthma: a registry-based twin study. Am J Respir Crit Care Med. 2009,13(12):1091–1097. doi: 10.1164/rccm.200809-1471OC.
58. Brand PL, Baraldi E, Bisgaard H, et al. Definition, assessment and treatment of wheezing disorders in preschool children: an evidence-based approach. Eur Respir J. 2008,32:1096–1110. doi: 10.1183/09031936.00002108.
59. Illi S, von Mutius E, Lau S, et al. Perennial allergen sensitisation early in life and chronic asthma in children: a birth cohort study. Lancet. 2006,368(9537):763–770. doi: 10.1016/S0140-6736(06)69286-6.
60. Pohunek P, Warner JO, Turzikova J, et al. Markers of eosinophilic inflammation and tissue re-modelling in children before clini-cally diagnosed bronchial asthma. Pediatr Allergy Immunol. 2005,16(1):43–51. doi: 10.1111/j.1399-3038.2005.00239.x.
61. Izuhara K, Conway SJ, Moore BB, et al. Roles of periostin in respiratory disorders. Am J Respir Crit Care Med. 2016,193(9):949–956. doi: 10.1164/rccm.201510-2032PP.
62. Parulekar AD, Atik MA, Hanania NA. Periostin, a novel biomarker of TH2-driven asthma. Curr Opin Pulm Med. 2014,20(1):60–65. doi: 10.1097/MCP.0000000000000005.
63. Inoue T, Akashi K, Watanabe M, et al. Periostin as a biomarker for the diagnosis of pediatric asthma. Pediatr Allergy Immunol. 2016,27(5):521–526. doi: 10.1111/pai.12575.
64. Lopez-Guisa JM, Powers C, File D, et al. Airway epithelial cells from asthmatic children differentially express-proremodeling factors. J Allergy Clin Immunol. 2012,129(4):990–997. doi: 10.1016/j.jaci.2011.11.035.
Review
For citations:
Sobotyuk N.V., Gaponenko V.P., Bochantsev S.V., Golochalova S.A., Sazonova I.V., Кharlamova T.N. POTENTIAL ROLE OF SERUM PERIOSTIN IN THE EARLY DETECTION OF BRONCHIAL ASTHMA IN CHILDREN. Current Pediatrics. 2016;15(5):452-456. (In Russ.) https://doi.org/10.15690/vsp.v15i5.1619