Preview

Current Pediatrics

Advanced search

THE URGENCY OF GENETIC VERIFICATION OF NON-COMPACTION CARDIOMYOPATHY IN CHILDREN: CLINICAL CASES

https://doi.org/10.15690/vsp.v17i2.1883

Abstract

Background. Non-compaction cardiomyopathy is a group of genetically heterogeneous, poorly studied myocardial diseases with a variety of clinical manifestations (from asymptomatic course to progressive systolic dysfunction with symptoms of chronic heart failure, arrhythmias, and thromboembolic complications). Considering the variety of genetic disorders associated with the development of noncompaction cardiomyopathy, genetic verification of the diagnosis is important for determining the prognosis and conducting genetic counselling of families with cases of the disease.

Description of the Clinical Case. The article presents two clinical observations of a severe course of non-compaction cardiomyopathy with remodeling of the heart cavities according to the dilated phenotype. In order to clarify the disease etiology, a molecular genetic study was conducted using the method of direct automatic sequencing with the analysis of targeted regions of 404 genes which mutations are described in hereditary diseases of the heart and blood vessels. After verifying the mutation (in the ACTC1 and MYBPC3 genes), we performed a search for the detected nucleotide substitution in the venous blood samples of parents and in one case — in the fetal DNA sample. The mode of inheritance has been determined; the probability of recurrence of the disease in siblings in subsequent pregnancies has been estimated.

Conclusion. The description of clinical cases shows the importance of genetic verification of the diagnosis in patients with non-compaction cardiomyopathy for determining the disease prognosis and developing an algorithm for monitoring relatives of a proband.

About the Authors

Nataliya A. Sdvigova
National Medical Research Center of Children’s Health
Russian Federation

Moscow


Disclosure of interest:

Not declared



Elena N. Basargina
National Medical Research Center of Children’s Health
Russian Federation

Moscow


Disclosure of interest:

Not declared



Dmitry V. Ryabtsev
National Medical Research Center of Children’s Health
Russian Federation

Moscow


Disclosure of interest:

Not declared



Kirill V. Savostyanov
National Medical Research Center of Children’s Health
Russian Federation

Moscow


Disclosure of interest:

Not declared



Alexander A. Pushkov
National Medical Research Center of Children’s Health
Russian Federation

Moscow


Disclosure of interest:

Not declared



Natalia V. Zhurkova
National Medical Research Center of Children’s Health
Russian Federation

Moscow


Disclosure of interest:

Not declared



Grigory V. Revunenkov
National Medical Research Center of Children’s Health
Russian Federation

Moscow


Disclosure of interest:

Not declared



Olga P. Zharova
National Medical Research Center of Children’s Health
Russian Federation

Moscow


Disclosure of interest:

Not declared



References

1. Finsterer J. Cardiogenetics, neurogenetics, and pathogenetics of left ventricular hypertrabeculation/noncompaction. Pediatr Cardiol. 2009;30(5):659–681. doi: 10.1007/s00246-008-9359-0.

2. Erokhina MG. Nekompaktnyi miokard levogo zheludochka: strukturno-funktsional’noe sostoyanie miokarda i osobennosti klinicheskikh proyavlenii. [dissertation abstract] Moscow; 2009. 26 p. (In Russ).

3. Ali SK, Abu-Sulaiman R, Agouba RB. Noncompaction cardiomyopathy: a new mechanism for mitral regurgitation with distinct clinical, echocardiographic features and pathological correlations. J Saudi Heart Assoc. 2015;27(2):71–78. doi: 10.1016/j.jsha.2014.07.002.

4. Amzulescu MS, Rousseau MF, Ahn SA, et al. Prognostic impact of hypertrabeculation and noncompaction phenotype in dilated cardiomyopathy: a CMR study. JACC Cardiovasc Imaging. 2015;8(8): 934–946. doi: 10.1016/j.jcmg.2015.04.015.

5. Alhabshan F, Smallhorn JF, Golding F, et al. Extent of myocardial non-compaction: comparison between MRI and echocardiographic evaluation. Pediatr Radiol. 2005;35(11):1147–1151. doi: 10.1007/s00247-005-1551-2.

6. Murphy RT, Thaman R, Blanes JG, et al. Natural history and familial characteristics of isolated left ventricular non-compaction. Eur Heart J. 2005;26(2):187–192. doi: 10.1093/eurheartj/ ehi025.

7. Stanton C, Bruce C, Connolly H, et al. Isolated left ventricular noncompaction syndrome. Am J Cardiol. 2009;104(8):1135–1138. doi: 10.1016/j.amjcard.2009.05.062.

8. Engberding R, Stollberger C, Ong P, et al. Isolated non-compaction cardiomyopathy. Dtsch Arztebl Int. 2010;107(12):206–213. doi: 10.3238/arztebl.2010.0206.

9. Sil’nova IV. Ul’trazvukovaya diagnostika nekompaktnogo miokarda u detei. [dissertation abstract] Moscow; 2012. 23 p. (In Russ).

10. Jefferies JL, Wilkinson JD, Sleeper LA, et al. Cardiomyopathy phenotypes and outcomes for children with left ventricular myocardial noncompaction: results from the pediatric cardiomyopathy registry. J Card Fail. 2015;21(11):877–884. doi: 10.1016/j.cardfail.2015.06.381.

11. McMahon CJ, Pignatelli RH, Nagueh SF, et al. Left ventricular non-compaction cardiomyopathy in children: characterisation of clinical status using tissue Doppler-derived indices of left ventricular diastolic relaxation. Heart. 2007;93(6):676–681. doi: 10.1136/hrt.2006.093880.

12. Brescia ST, Rossano JW, Pignatelli R, et al. Mortality and sudden death in pediatric left ventricular noncompaction in a tertiary referral center. Circulation. 2013;127(22):2202–2208. doi: 10.1161/circulationaha.113.002511.

13. Xing YL, Ichida F, Matsuoka T, et al. Genetic analysis in patients with left ventricular noncompaction and evidence for genetic heterogeneity. Mol Genet Metab. 2006;88(1):71–77. doi: 10.1016/j.ymgme.2005.11.009.

14. Zaragoza MV, Arbustini E, Narula J. Noncompaction of the left ventricle: primary cardiomyopathy with an elusive genetic etiology. Curr Opin Pediatr. 2007;19(6):619–627. doi: 10.1097/MOP.0b013e3282f1ecbc.

15. Scaglia F, Towbin JA, Craigen WJ, et al. Clinical spectrum, morbidity, and mortality in 113 pediatric patients with mitochondrial disease. Pediatrics. 2004;114(4):925–931. doi: 10.1542/peds.2004-0718.

16. Oechslin E, Jenni R. Left ventricular non-compaction revisited: a distinct phenotype with genetic heterogeneity? Eur Heart J. 2011;32(12):1446–1456. doi: 10.1093/eurheartj/ehq508.

17. Arbustini E, Weidemann F, Hall JL. Left ventricular noncompaction: a distinct cardiomyopathy or a trait shared by different cardiac diseases? J Am Coll Cardiol. 2014;64(17):1840–1850. doi: 10.1016/j.jacc.2014.08.030.

18. Arbustini E, Narula N, Dec GW, et al. The MOGE(S) classification for a phenotype-genotype nomenclature of cardiomyopathy: endorsed by the World Heart Federation. J Am Coll Cardiol. 2013;62(22):2046–2072. doi: 10.1016/j.jacc.2013.08.1644.

19. Ackerman MJ, Priori SG, Willems S, et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. 2011;8(8):1308–1339. doi: 10.1016/j.hrthm.2011.05.020.

20. Khronicheskaya serdechnaya nedostatochnost’ u detei. Klinicheskie rekomendatsii. Moscow; 2016. (In Russ). Доступно по: http://cardiorus.ru/local/api/download/?id=979b0ebfbd5e6be4f3ceb5d4e414c1b9. Ссылка активна на 10.03.2018.

21. Klaassen S, Probst S, Oechslin E, et al. Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation. 2008;117(22):2893–2901. doi: 10.1161/CIRCULATIONAHA.107.746164.

22. Mayosi BM, Khogali S, Zhang B, Watkins H. Cardiac and skeletal actin gene mutations are not a common cause of dilated cardiomyopathy. J Med Genet. 1999;36(10):796–797. doi: 10.1136/jmg.36.10.796.

23. Gajendrarao P, Krishnamoorthy N, Selvaraj S, et al. An investigation of the molecular mechanism of double cMyBP-C mutation in a patient with end-stage hypertrophic cardiomyopathy. J Cardiovasc Transl Res. 2015;8(4):232–243. doi: 10.1007/s12265-015-9624-6.

24. Toth T, Nagy V, Faludi R, et al. The Gln1233ter mutation of the myosin binding protein C gene: causative mutation or innocent polymorphism in patients with hypertrophic cardiomyopathy? Int J Cardiol. 2011;153(2):216–219. doi: 10.1016/j.ijcard.2011.09.062.

25. Matsson H, Eason J, Bookwalter CS, et al. Alpha-cardiac actin mutations produce atrial septal defects. Hum Mol Genet. 2008;17(2):256–265. doi: 10.1093/hmg/ddm302.

26. Monserrat L, Hermida-Prieto M, Fernandez X, et al. Mutation in the alpha-cardiac actin gene associated with apical hypertrophic cardiomyopathy, left ventricular non-compaction, and septal defects. Eur Heart J. 2007;28(16):1953–1961. doi: 10.1093/eurheartj/ehm239.

27. Ehlermann P, Weichenhan D, Zehelein J, et al. Adverse events in families with hypertrophic or dilated cardiomyopathy and mutations in the MYBPC3 gene. BMC Med Genet. 2008;9:95. doi: 10.1186/1471-2350-9-95.

28. Hershberger RE, Norton N, Morales A, et al. Coding sequence rare variants identified in MYBPC3, MYH6, TPM1, TNNC1, and TNNI3 from 312 patients with familial or idiopathic dilated cardiomyopathy. Circ Cardiovasc Genet. 2010;3(2):155–161. doi: 10.1161/Circgenetics.109.912345.

29. Probst S, Oechslin E, Schuler P, et al. Sarcomere gene mutations in isolated left ventricular noncompaction cardiomyopathy do not predict clinical phenotype. Circ Cardiovasc Genet. 2011;4(4): 367–374. doi: 10.1161/CIRCGENETICS.110.959270.


Review

For citations:


Sdvigova N.A., Basargina E.N., Ryabtsev D.V., Savostyanov K.V., Pushkov A.A., Zhurkova N.V., Revunenkov G.V., Zharova O.P. THE URGENCY OF GENETIC VERIFICATION OF NON-COMPACTION CARDIOMYOPATHY IN CHILDREN: CLINICAL CASES. Current Pediatrics. 2018;17(2):157-165. (In Russ.) https://doi.org/10.15690/vsp.v17i2.1883

Views: 1187


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)