Стратегии научно-практического поиска: существует ли связь между формированием оси «кишечник – мозг» и характеристиками сна младенцев?
https://doi.org/10.15690/vsp.v20i6.2356
Аннотация
В обзоре приведен анализ современных публикаций по проблеме взаимосвязи формирования кишечной микробиоты ребенка с созреванием паттернов нейрофизиологической деятельности на примере становления возрастной структуры сна. Показана значимость этапного созревания кишечной микробиоты в свете концепции оси «головной мозг – кишечный микробиом» (brain – gut microbiom axis); описаны механизмы и медиаторы, задействованные в формировании этой оси, и обоснована ее онтогенетическая значимость. Представлены основные этапы становления функции сна у ребенка как важного компонента общего созревания психики во взаимосвязи с факторами окружающей среды и установками семьи, а также рекомендации по продолжительности периодов сна; оценка характеристик засыпания и структуры сна. Показаны прямые и обратные связи количественных и качественных параметров микробиоты с эффективностью сна. Выявлена положительная корреляция между консолидированностью сна, количеством и разнообразием видов Bacteroidetes в кишечной микробиоте, а также составом бактериальных метаболитов. Наличие указанных связей является теоретическим обоснованием для разработки методов патогенетической коррекции нарушений как микробиоты, так и сна.
Об авторах
И. А. БеляеваРоссия
Беляева Ирина Анатольевна, доктор медицинских наук, профессор РАН, профессор кафедры факультетской педиатрии педиатрического факультета РНИМУ им. Н.И. Пирогова, главный научный сотрудник НИИ педиатрии и охраны здоровья детей ЦКБ РАН, врач-неонатолог высшей квалификационной категории Морозовской детской городской клинической больницы
119333, Москва, ул. Фотиевой, д. 10, к. 1
Раскрытие интересов:
Чтение лекций для компании АО «ПРОГРЕСС», «МЕДЕЛА», «АКРИХИН», «НЕСТЛЕ», «ХИПП»
Т. В. Турти
Россия
Москва
Раскрытие интересов:
Чтение лекций для компании АО «ПРОГРЕСС», «АКРИХИН»
Е. П. Бомбардирова
Россия
Москва
Раскрытие интересов:
Автор статьи подтвердил отсутствие конфликта интересов, о котором необходимо сообщить
П. Е. Садчиков
Россия
Москва
Раскрытие интересов:
Автор статьи подтвердил отсутствие конфликта интересов, о котором необходимо сообщить
А. Ю. Нагонов
Россия
Москва
Раскрытие интересов:
Автор статьи подтвердил отсутствие конфликта интересов, о котором необходимо сообщить
Список литературы
1. Stiemsma LT, Michels KB. The role of the microbiome in the developmental origins of health and disease. Pediatrics. 2018;141(4):e20172437. doi: 10.1542/peds.2017-2437
2. Underwood MA, Mukhopadhyay S, Lakshminrusimha S, et al. Neonatal intestinal dysbiosis. J Perinatol. 2020;40(11):1597–1608. https://doi.org/10.1038/s41372-020-00829-2
3. Walker RW, Clemente JC, Peter I, Loos RJF. The prenatal gut microbiome: are we colonized with bacteria in utero? Pediatr Obes. 2017;12(1):3–17. doi: 10.1111/ijpo.12217
4. Nagpal R, Tsuji H, Takahashi T, et al. Sensitive Quantitative Analysis of the Meconium Bacterial Microbiota in Healthy Term Infants Born Vaginally or by Cesarean Section. Front Microbiol. 2016;7:1997. doi: 10.3389/fmicb.2016.01997
5. Nagpal R, Tsuji H, Takahashi T, et al. Ontogenesis of the Gut Microbiota Composition in Healthy, Full-Term, Vaginally Born and Breast-Fed Infants over the First 3 Years of Life: A Quantitative Bird’s-Eye View. Front Microbiol. 2017;8:1388. doi: 10.3389/fmicb.2017.01388
6. Lyons KE, Ryan CA, Dempsey EM, et al. Breast Milk, a Source of Beneficial Microbes and Associated Benefits for Infant Health. Nutrients. 2020;12(4):1039. doi: 10.3390/nu12041039
7. Fujimura KE, Sitarik AR, Havstad S, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22(10):1187–1191. doi: 10.1038/nm.4176
8. Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30(6): 492–506. doi:10.1038/s41422-020-0332-7
9. Carabotti M, Scirocco A, Maselli MA, et al. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203.
10. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124(4):837–848. doi: 10.1016/j.cell.2006.02.017
11. Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota. J Clin Invest. 2015;125(3):926–938. doi: 10.1172/JCI76304
12. Feitong L, Jie L, Fan W, et al. Altered composition and function of intestinal microbiota in autism spectrum disorders: a systematic review. Transl Psychiatry. 2019;9(1):43. doi: 10.1038/s41398-019-0389-6
13. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–141. doi: 10.1016/j.cell.2014.03.011
14. Zelante T, Iannitti RG, Cunha C, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39(2): 372–385. doi: 10.1016/j.immuni.2013.08.003
15. Rosser EC, Oleinika K, Tonon S, et al. Regulatory B cells are induced by gut microbiota–driven interleukin-1β and interleukin-6 production. Nat Med. 2014;20(11):1334. doi: org/10.1038/nm.3680
16. Brett BE, de Weerth C. The microbiota-gut-brain axis: A promising avenue to foster healthy developmental outcomes. Dev Psychobiol. 2019;61(5):772–782. doi: 10.1002/dev.21824
17. Zhu X, Han Y, Du J, et al. Microbiota-gut-brain axis and the central nervous system. Oncotarget. 2017;8(32):53829–5338. doi: 10.18632/oncotarget.17754
18. Cani PD, Knauf C. How gut microbes talk to organs: The role of endocrine and nervous routes. Mol Metab. 2016;5(9):743–752. doi: 10.1016/j.molmet.2016.05.011
19. Cani PD, Possemiers S, Van de Wiele T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58(8):1091–1103. doi: 10.1136/gut.2008.165886
20. Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Trans Med. 2014;6(263):263ra158–263ra158. doi: 10.1126/scitranslmed.3009759
21. Gobin CM, Banks JB, Fins AI, et al. Poor sleep quality is associated with a negative cognitive bias and decreased sustained attention. J Sleep Res. 2015;24(5):535–542. doi: 10.1111/jsr.12302
22. Sun W, Li SX, Jiang Y, et al. A community-based study of sleep and cognitive development in infants and toddlers. J Clin Sleep Med. 2018;14(6):977–984 doi: 10.5664/jcsm.7164
23. Super CM, Blom MJM, Harkness S, et al. Culture and the organization of infant sleep: A study in the Netherlands and the U.S.A. Infant Behav Dev. 2021;64:101620. doi: 10.1016/j.infbeh.2021.101620
24. Öztürk M, Boran P, Ersu R, Peker Y. Possums-based parental education for infant sleep: cued care resulting in sustained breastfeeding. Eur J Pediatr. 2021;180(6):1769–1776. doi: 10.1007/s00431-021-03942-2
25. Besedovsky L, Lange T, Haack M. The sleep-immune crosstalk in health and disease. Physiol Rev. 2019;99(3):1325–1380. doi: 10.1152/physrev.00010.2018
26. Mindell JA, Leichman ES, Composto J, et al. Development of infant and toddler sleep patterns: real-world data from a mobile application. J Sleep Res. 2016;25(5):508–516. doi: 10.1111/jsr.12414
27. Byars KC, Yolton K, Rausch J, et al. Prevalence, patterns, and persistence of sleep problems in the first 3 years of life. Pediatrics. 2012;129(2):e276–e284. doi: 10.1542/peds.2011-0372
28. Bruni O, Baumgartner E, Sette S, et al. Longitudinal study of sleep behavior in normal infants during the first year of life. J Clin Sleep Med. 2014;10(10):1119–1127. doi: 10.5664/jcsm.4114
29. Pacheco D. Babies and Sleep. In: Sleep Foundation. Available online: https://www.sleepfoundation.org/baby-sleep. Accessed on December 2, 2021.
30. Henderson JM, France KG, Owens JL, et al. Sleeping through the night: the consolidation of self-regulated sleep across the first year of life. Pediatrics. 2010 infants’ nocturnal sleep across the first year of life. Sleep Med Rev. 2011;15(4):211–220. doi: 10.1016/j.smrv.2010.08.003
31. Hirshkowitz M, Whiton K, Albert SM, et al. National Sleep Foundation’s updated sleep duration recommendations: final report. Sleep Health. 2015;1(4):233–243. doi: 10.1016/j.sleh.2015.10.004
32. Shepard-Ohta R. Consolidated Sleep for Infants: Is it Necessary to Healthy Brain Development? Hey Sleepy Baby, LLC; 2021 May 27. Available online: https://heysleepybaby.com/blog/consolidated-sleep-for-infants-is-it-necessary-to-healthy-brain-development. Accessed on December 2, 2021.
33. Walker M. Why We Sleep: Unlocking the Power of Sleep and Dreams. New York, NY: Scribner; 2017. 359 p.
34. Pennestri MH, Laganière C, Bouvette-Turcot AA, et al. Uninterrupted Infant Sleep, Development, and Maternal Mood. Pediatrics. 2018;142(6):e20174330. doi: 10.1542/peds.2017-4330
35. Tham EK, Schneider N, Broekman BF. Infant sleep and its relation with cognition and growth: a narrative review. Nat Sci Sleep. 2017;9:135–149. doi: 10.2147/NSS.S125992
36. Jiang F. Sleep and Early Brain Development. Ann Nutr Metab. 2019;75:(1):44–54. doi: 10.1159/000508055
37. Roffwarg HP, Muzio JN, Dement WC. Ontogenetic development of the human sleep-dream cycle. Science. 1966;152(3722):604–619. doi: 10.1126/science.152.3722.604
38. Kryger MH, Roth T, Dement WC. Principle and practice of sleep medicine. 5th ed. Philadelphia: Saunders/Elsevier; 2011.
39. Sheldon SH, Sateia MJ, Carskadon MA. Sleep in infants and children. In: Sleep Medicine. Lee-Chiong TL, Sateia MJ, Carskadon MA, eds. Philadelphia (PA): Hanley and Belfus Inc; 2002. pp. 99–103.
40. Chaput JP, Dutil C, Sampasa-Kanyinga H. Sleeping hours: what is the ideal number and how does age impact this? Nat Sci Sleep. 2018;10:421–430. doi: 10.2147/NSS.S163071
41. Hirshkowitz M, Whiton K, Albert SM, et al. National Sleep Foundation’s sleep time duration recommendations: methodology and results summary. Sleep Health. 2015;1(1):40–43. doi: 10.1016/j.sleh.2014.12.010
42. Lin QM, Spruyt K, Leng Y, et al. Cross-cultural disparities of subjective sleep parameters and their age-related trends over the first three years of human life: A systematic review and meta-analysis. Sleep Med Rev. 2019;48:101203. doi: 10.1016/j.smrv.2019.07.006
43. Cubero J, Valero V, Sánchez J, et al. The circadian rhythm of tryptophan in breast milk affects the rhythms of 6-sulfatoxymelatonin and sleep in newborn. Neuro Endocrinol Lett. 2005; 26(6):657–661.
44. Hagan JF, Shaw JS, Duncan PM. Bright Futures: Guidelines for Health Supervision of Infants, Children, and Adolescents. Elk Grove Village (IL): American Academy of Pediatrics; 2008.
45. Smith RP, Lyle SM, et al. Gut microbiome diversity is associated with sleep physiology in humans. PLoS One. 2019;14(10):e0222394. doi: 10.1371/journal.pone.0222394
46. Poroyko VA, Carreras A, Khalyfa A, et al. Chronic sleep disruption alters gut microbiota, induces systemic and adipose tissue inflammation and insulin resistance in mice. Sci Rep. 2016;6:35405. doi: 10.1038/srep35405
47. Anderson JR, Carroll I, Azcarate-Peril MA, et al. A preliminary examination of gut microbiota, sleep, and cognitive flexibility in healthy older adults. Sleep Med. 2017;38:104–107. doi: 10.1016/j.sleep.2017.07.018
48. Smith RP, Easson C, Lyle SM, et al. Gut microbiome diversity is associated with sleep physiology in humans. PLoS One. 2019; 14(10):e0222394. doi: 10.1371/journal.pone.0222394
49. Parkar SG, Kalsbeek A, Cheeseman JF. Potential Role for the Gut Microbiota in Modulating Host Circadian Rhythms and Metabolic Health. Microorganisms. 2019;7(2):41. doi: 10.3390/microorganisms7020041
50. Singh RK, Chang H-W, Yan D, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73 doi: 10.1186/s12967-017-1175-y
51. Heath А-LМ, Haszard JJ, Galland BC, et al. Association between the faecal short-chain fatty acid propionate and infant sleep. Eur J Clin Nutr. 2020;74(9):1362–1365. doi: 10.1038/s41430-019-0556-0
52. Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341(6145):569–573. doi: 10.1126/science.1241165
53. Strandwitz P, Kim KH, Terekhova D, et al. GABA-modulating bacteria of the human gut microbiota. Nat Microbiol. 2019;4(3):396. doi: 10.1038/s41564-018-0307-3
54. Yunes R, Poluektova E, Dyachkova M, et al. GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota. Anaerobe. 2016;42:197–204. doi: 10.1016/j.anaerobe.2016.10.011
55. Todd N, Zhang Y, Power Ch, et al.Modulation of brain function by targeted delivery of GABA through the disrupted blood-brain barrier. Neiroimage. 2019;189:267-275.
56. Gottesmann C. GABA mechanisms and sleep. Neuroscience. 2002;111(2):231–239. doi: 10.1016/s0306-4522(02)00034-9
57. Ursin R. Serotonin and sleep. Sleep Med Rev. 2002;6(1):55–67. doi: 10.1053/smrv.2001.0174
58. Frey DJ, Fleshner M, Wright KP Jr. The effects of 40 hours of total sleep deprivation on inflammatory markers in healthy young adults. Brain Behav Immun. 2007;21(8):1050–1057. doi: 10.1016/j.bbi.2007.04.003
59. Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65(9):732–741. doi: 10.1016/j.biopsych.2008.11.02
60. Nicolaides NC, Vgontzas AN, Kritikou I, et al. HPA Axis and Sleep. [Updated 2020 Nov 24]. In: Endotext [Internet]. Feingold KR, Anawalt B, Boyce A, et al., eds. South Dartmouth (MA): MDText.com, Inc.; 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279071./ Accessed on December 4, 2021.
61. Pannaraj PS, Li F, Cerini C, et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr. 2017;171(7): 647–654. doi: 10.1001/jamapediatrics.2017.0378
62. Brown A, Harries V. Infant sleep and night feeding patterns during later infancy: association with breastfeeding frequency, daytime complementary food intake, and infant weight. Breastfeed Med. 2015;10(5):246–252. doi: 10.1089/bfm.2014.0153
63. Ball HL, Taylor CE, Thomas V, Douglas PS. Development and evaluation of ‘Sleep, Baby & You’ — An approach to supporting parental well-being and responsive infant caregiving. PLoS One. 2020;15(8):e0237240. doi: 10.1371/journal.pone.0237240
64. Cubero J, Chanclón B, Sánchez S, et al. Improving the quality of infant sleep through the inclusion at supper of cereals enriched with tryptophan, adenosine-5’-phosphate, and uridine-5’-phosphate. Nutr Neurosci. 2009;12(6):272–280. doi: 10.1179/147683009X423490
65. Krol KM, Grossmann T. Psychological effects of breastfeeding on children and mothers. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2018;61(8):977–985. doi: 10.1007/s00103-018-2769-0
66. Vandeputte D, Falony G, Vieira-Silva S, et al. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut. 2017;66(11):1968–1974. doi: 10.1136/gutjnl-2016-313271
Рецензия
Для цитирования:
Беляева И.А., Турти Т.В., Бомбардирова Е.П., Садчиков П.Е., Нагонов А.Ю. Стратегии научно-практического поиска: существует ли связь между формированием оси «кишечник – мозг» и характеристиками сна младенцев? Вопросы современной педиатрии. 2021;20(6):499-505. https://doi.org/10.15690/vsp.v20i6.2356
For citation:
Belyaeva I.A., Turti T.V., Bombardirova E.P., Sadchikov P.E., Nagonov A.Yu. Strategies for Scientific and Practicall Search: is There Any Correlation Between the Development of the Gut-Brain Axis and the Sleep Characteristics in Infants? Current Pediatrics. 2021;20(6):499-505. (In Russ.) https://doi.org/10.15690/vsp.v20i6.2356