Preview

Current Pediatrics

Advanced search

Transient Tachypnea of the Newborn: Pathogenesis, Diagnosis, Treatment

https://doi.org/10.15690/vsp.v21i1.2381

Abstract

The review provides up-to-date information on the development of transient tachypnea of the newborn (TTN) considering early postnatal period physiology and pathophysiological processes. Data on risk factors of TTN development, feature of disease course, and its differential diagnosis are presented. Traditional treatment methods for patients with TTN as well as results of modern studies on efficacy of non-invasive respiratory support are covered.

About the Authors

Evgenii V. Shestak
Ekaterinburg Clinical Perinatal Center; Ural State Medical University
Russian Federation

Ekaterinburg


Disclosure of interest:

Not declared



Olga P. Kovtun
Ural State Medical University

Ekaterinburg


Disclosure of interest:

Not declared



References

1. Hooper SB, Te Pas AB, Kitchen MJ. Respiratory transition in the newborn: A three-phase process. Arch Dis Child Fetal Neonatal Ed. 2016;101(3):F266–271. doi: https://doi.org/10.1136/archdischild-2013-305704

2. Reanimatsiya i stabilizatsiya sostoyaniya novorozhdennykh detei v rodil’nom zale: Methodological letter of the Ministry of Health of the Russian Federation dated Marth 04, 2020. Baybarina EN, ed. (In Russ). Available online: https://neonatology.pro/wp-content/uploads/2020/03/letter_resuscitation_newborn_delivery_2020.pdf. Accessed on February 16, 2022.

3. Ma X, Xu X, Chen C, et al. Epidemiology of respiratory distress and the illness severity in late preterm or term infants: A prospective multi-center study. Chin Med J (Engl). 2010; 123(20):2776–2780.

4. Edwards MO, Kotecha SJ, Kotecha S. Respiratory distress of the term newborn infant. Paediatr Respir Rev. 2013;14(1):29–36; quiz 36-7. doi: https://doi.org/10.1016/j.prrv.2012.02.002

5. Clark RH. The epidemiology of respiratory failure in neonates born at an estimated gestational age of 34 weeks or more. J Perinatol. 2005;25(4):251–257. doi: https://doi.org/10.1038/sj.jp.7211242

6. Sun H, Xu F, Xiong H, et al. Characteristics of respiratory distress syndrome in infants of different gestational ages. Lung. 2013;191(4):425–433. doi: https://doi.org/10.1007/s00408-013-9475-3

7. International Statistical Classification of Diseases and Related Health Problems 10th Revision (ICD-10)-WHO Version for 2019-covid-expanded. Chapter XVI. Certain conditions originating in the perinatal period (P00–P96). Available online: https://icd.who.int/browse10/2019/en#/P20-P29. Accessed on February 16, 2022.

8. Avery ME, Gatewood OB, Brumley G. Transient tachypnea of newborn. Possible delayed resorption of fluid at birth. Am J Dis Child. 1966;111(4):380–385. doi: https://doi.org/10.1001/archpedi.1966.02090070078010

9. Raju TN, Higgins RD, Stark AR, Leveno KJ. Optimizing care and outcome for late-preterm (near-term) infants: A summary of the workshop sponsored by the National Institute of Child Health and Human Development. Pediatrics. 2006;118(3):1207–1214. doi: https://doi.org/10.1542/peds.2006-0018

10. Kasap B, Duman N, Ozer E, et al. Transient tachypnea of the newborn: Predictive factor for prolonged tachypnea. Pediatr Int. 2008;50(1): 81–84. doi: https://doi.org/10.1111/j.1442-200X.2007.02535.x

11. Jain L. Respiratory morbidity in late-preterm infants: prevention is better than cure! Am J Perinatol. 2008;25(2):75–78. doi: https://doi.org/10.1055/s-2007-1022471

12. Spong CY. Defining “term” pregnancy: Recommendations from the defining “term” pregnancy workgroup. JAMA. 2013.;309(23): 2445–2446. doi: https://doi.org/10.1001/jama.2013.6235

13. Stewart DL, Barfield WD. Updates on an at-risk population: Late-preterm and early-term infants. Pediatrics. 2019;144(5): e20192760. doi: https://doi.org/10.1542/peds.2019-2760

14. Sengupta S, Carrion V, Shelton J, et al. Adverse neonatal outcomes associated with early-term birth. JAMA Pediatr. 2013;167(11):1053–1059. doi: https://doi.org/10.1001/jamapediatrics.2013.2581

15. Mahoney AD, Jain L. Respiratory disorders in moderately preterm, late preterm, and early term infants. Clin Perinatol. 2013;40(4): 665–678. doi: https://doi.org/10.1016/j.clp.2013.07.004

16. Consortium on Safe Labor; Hibbard JU, Wilkins I, Sun L, et al. Respiratory morbidity in late preterm births. JAMA. 2010;304(4): 419–425. doi: https://doi.org/10.1001/jama.2010.1015

17. Brown MJ, Olver RE, Ramsden CA, et al. Effects of adrenaline and of spontaneous labour on the secretion and absorption of lung liquid in the fetal lamb. J Physiol. 1983;344:137–152. doi: https://doi.org/10.1113/jphysiol.1983.sp014929

18. Joshi S, Kotecha S. Lung growth and development. Early Hum Dev. 2007;83(12):789–794. doi: https://doi.org/10.1016/j.earlhumdev.2007.09.007

19. McCray PB Jr, Bettencourt JD, Bastacky J. Developing bronchopulmonary epithelium of the human fetus secretes fluid. Am J Physiol. 1992;262(3 Pt 1):L270–L279. doi: https://doi.org/10.1152/ajplung.1992.262.3.L270

20. Matalon S, Bartoszewski R, Collawn JF. Role of epithelial sodium channels in the regulation of lung fluid homeostasis. Am J Physiol Lung Cell Mol Physiol. 2015;309(11):L1229–L1238. doi: https://doi.org/10.1152/ajplung.00319.2015

21. Wittekindt OH, Dietl P. Aquaporins in the lung. Pflugers Arch. 2019;471(4):519–532. doi: https://doi.org/10.1007/s00424-018-2232-y

22. Castorena-Torres F, Alcorta-García MR, Lara-Díaz VJ. Aquaporine-5 and epithelial sodium channel β-subunit gene expression in gastric aspirates in human term newborns. Heliyon. 2018;4(4):e00602. doi: https://doi.org/10.1016/j.heliyon.2018.e00602

23. Olver RE, Strang LB. Ion fluxes across the pulmonary epithelium and the secretion of lung liquid in the foetal lamb. J Physiol. 1974;241(2):327–357. doi: https://doi.org/10.1113/jphysiol.1974.sp010659

24. Hummler E, Barker P, Gatzy J, et al. Early death due to defective neonatal lung liquid clearance in alpha-ENaC-deficient mice. Nat Genet. 1996;12(3):325–328. doi: https://doi.org/10.1038/ng0396-325

25. Siew ML, Wallace MJ, Kitchen MJ, et al. Inspiration regulates the rate and temporal pattern of lung liquid clearance and lung aeration at birth. J Appl Physiol (1985). 2009;106(6):1888–1895. doi: https://doi.org/10.1152/japplphysiol.91526.2008

26. McGillick EV, Lee K, Yamaoka S, et al. Elevated airway liquid volumes at birth: a potential cause of transient tachypnea of the newborn. J Appl Physiol (1985). 2017;123(5):1204–1213. doi: https://doi.org/10.1152/japplphysiol.00464.2017

27. Jain L, Eaton DC. Physiology of fetal lung fluid clearance and the effect of labor. Semin Perinatol. 2006;30(1):34–43. doi: https://doi.org/10.1053/j.semperi.2006.01.006

28. Machado LU, Fiori HH, Baldisserotto M, et al. Surfactant deficiency in transient tachypnea of the newborn. J Pediatr. 2011;159(5): 750–754. doi: https://doi.org/10.1016/j.jpeds.2011.04.023

29. Weinberger B, Heck DE, Laskin DL, et al. Nitric oxide in the lung: therapeutic and cellular mechanisms of action. Pharmacol Ther. 1999;84(3):401–411. doi: https://doi.org/10.1016/s0163-7258(99)00044-3

30. Isik DU, Bas AY, Demirel N, et al. Increased asymmetric dimethylarginine levels in severe transient tachypnea of the newborn. J Perinatol. 2016;36(6):459–462. doi: https://doi.org/10.1038/jp.2016.9

31. Cummings JJ. Nitric oxide decreases lung liquid production in fetal lambs. J Appl Physiol (1985). 1997;83(5):1538–1544. doi: https://doi.org/10.1152/jappl.1997.83.5.1538

32. Tutdibi E, Gries K, Bücheler M, et al. Impact of labor on outcomes in transient tachypnea of the newborn: population-based study. Pediatrics. 2010;125(3):e577–e583. doi: https://doi.org/10.1542/peds.2009-0314

33. Ryan CA, Hughes P. Neonatal respiratory morbidity and mode of delivery at term: influence of timing of elective caesarean section. Br J Obstet Gynaecol. 1995;102(10):843–844. doi: https://doi.org/10.1111/j.1471-0528.1995.tb10861.x

34. Rody odnoplodnye, rodorazreshenie putem kesareva secheniya: Clinical guidelines. ROAG, AAAR, AAAR; 2021. p. 21 (In Russ).

35. ACOG committee opinion no. 559: Cesarean delivery on maternal request. Obstet Gynecol. 2013;121(4):904–907. doi: https://doi.org/10.1097/01.AOG.0000428647.67925.d3

36. Cordero L, Treuer SH, Landon MB, Gabbe SG. Management of infants of diabetic mothers. Arch Pediatr Adolesc Med. 1998;152(3):249–254. doi: https://doi.org/10.1001/archpedi.152.3.249

37. Pinter E, Peyman JA, Snow K, et al. Effects of maternal diabetes on fetal rat lung ion transport. Contribution of alveolar and bronchiolar epithelial cells to Na+, K(+)-ATPase expression. J Clin Invest. 1991;87(3):821–830. doi: https://doi.org/10.1172/JCI115085

38. McGillick EV, Lock MC, Orgeig S, et al. Maternal obesity mediated predisposition to respiratory complications at birth and in later life: understanding the implications of the obesogenic intrauterine environment. Paediatr Respir Rev. 2017;21:11–18. doi: https://doi.org/10.1016/j.prrv.2016.10.003

39. Mendola P, Männistö TI, Leishear K, et al. Neonatal health of infants born to mothers with asthma. J Allergy Clin Immunol. 2014;133(1): 85-90.e1–e4. doi: https://doi.org/10.1016/j.jaci.2013.06.012

40. Demissie K, Marcella SW, Breckenridge MB, et al. Maternal asthma and transient tachypnea of the newborn. Pediatrics. 1998;102(1Pt1):84–90. doi: https://doi.org/10.1542/peds.102.1.84

41. Badran EF, Abdalgani MM, Al-Lawama MA, et al. Effects of perinatal risk factors on common neonatal respiratory morbidities beyond 36 weeks of gestation. Saudi Med J. 2012;33(12): 1317–1323.

42. Dani C, Reali MF, Bertini G, et al. Risk factors for the development of respiratory distress syndrome and transient tachypnoea in newborn infants. Italian Group of Neonatal Pneumology. Eur Respir J. 1999;14(1):155–159. doi: https://doi.org/10.1034/j.1399-3003.1999.14a26.x

43. Yost GC, Young PC, Buchi KF. Significance of grunting respirations in infants admitted to a well-baby nursery. Arch Pediatr Adolesc Med. 2001;155(3):372–375. doi: https://doi.org/10.1001/archpedi.155.3.372

44. Order of Ministry of Health of the Russian Federation dated May 10, 2017 N 203н “Ob utverzhdenii kriteriev otsenki kachestva meditsinskoi pomoshchi”. p. 160. (In Russ.). Available online: https://www.rncrr.ru/upload/Doc/N203.pdf. Accessed on February 16, 2022.

45. Silverman WA, Andersen DH. A controlled clinical trial of effects of water mist on obstructive respiratory signs, death rate and necropsy findings among premature infants. Pediatrics. 1956;17(1):1–10.

46. Wood DW, Downes JJ, Lecks HI. A clinical scoring system for the diagnosis of respiratory failure. Preliminary report on childhood status asthmaticus. Am J Dis Child. 1972;123(3):227–228. doi: https://doi.org/10.1001/archpedi.1972.02110090097011

47. Guglani L, Lakshminrusimha S, Ryan RM. Transient Tachypnea of the Newborn. Pediatr Rev. 2008;29(11):e59–e65. doi: https://doi.org/10.1542/pir.29-11-e59

48. Yurdakök M. Transient tachypnea of the newborn: what is new? J Matern Fetal Neonatal Med. 2010;23(Suppl 3):24–26. doi: https://doi.org/10.3109/14767058.2010.507971

49. Gizzi C, Klifa R, Pattumelli MG, et al. Continuous Positive Airway Pressure and the Burden of Care for Transient Tachypnea of the Neonate: Retrospective Cohort Study. Am J Perinatol. 2015;32(10): 939–943. doi: https://doi.org/10.1055/s-0034-1543988

50. Kurl S, Heinonen KM, Kiekara O. The first chest radiograph in neonates exhibiting respiratory distress at birth. Clin Pediatr (Phila). 1997;36(5):285–289. doi: https://doi.org/10.1177/000992289703600506

51. Alhassen Z, Vali P, Guglani L, et al. Recent Advances in Pathophysiology and Management of Transient Tachypnea of Newborn. J Perinatol. 2021;41(1):6–16. doi: https://doi.org/10.1038/s41372-020-0757-3

52. Mullowney T, Manson D, Kim R, et al. Primary ciliary dyskinesia and neonatal respiratory distress. Pediatrics. 2014;134(6): 1160–1166. doi: https://doi.org/10.1542/peds.2014-0808

53. Vrozhdennaya pnevmoniya: Clinical guidelines. Russian association of perinatal medicine specialists, Russian Society of Neonatologists; 2017. (In Russ). Available online: https://neonatology.pro/wp-content/uploads/2019/12/protokol_congenital_pneumonia_2017.pdf. Accessed on February 16, 2022.

54. Gooding CA, Gregory GA. Roentgenographic analysis of meconium aspiration of the newborn. Radiology. 1971;100(1): 131–140. doi: https://doi.org/10.1148/100.1.131

55. Aly H, Massaro A, Acun C, et al. Pneumothorax in the newborn: clinical presentation, risk factors and outcomes. J Matern Fetal Neonatal Med. 2014;27(4):402–406. doi: https://doi.org/10.3109/14767058.2013.818114

56. Sweet DG, Carnielli V, Greisen G, et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome — 2019 Update. Neonatology. 2019;115(4):432–450. doi: https://doi.org/10.1159/000499361

57. Terapevticheskaya gipotermiya u novorozhdennykh detei: Clinical guidelines. Russian Association of Perinatal Medicine Specialists, Russian Society of Neonatologists; 2019. (In Russ). Available online: https://neonatology.pro/wp-content/uploads/2019/02/protokol_hypothermia_2019.pdf. Accessed on February 16, 2022.

58. Wynn JL, Wong HR, Shanley TP, et al. Time for a neonatal-specific consensus definition for sepsis. Pediatr Crit Care Med. 2014;15(6): 523–528. doi: https://doi.org/10.1097/PCC.0000000000000157

59. Cleveland RH. A radiologic update on medical diseases of the newborn chest. Pediatr Radiol. 1995;25(8):631–637. doi: https://doi.org/10.1007/BF02011835

60. Guglani L, Lakshminrusimha S, Ryan RM. Transient tachypnea of the newborn. Pediatr Rev. 2008;29(11):e59–e65. doi: https://doi.org/10.1542/pir.29-11-e59

61. Liu J, Wang Y, Fu W, et al. Diagnosis of neonatal transient tachypnea and its differentiation from respiratory distress syndrome using lung ultrasound. Medicine (Baltimore). 2014;93(27):e197. doi: https://doi.org/10.1097/MD.0000000000000197

62. Ibrahim M, Omran A, AbdAllah NB, et al. Lung ultrasound in early diagnosis of neonatal transient tachypnea and its differentiation from other causes of neonatal respiratory distress. J Neonatal Perinatal Med. 2018;11(3):281–287. doi: https://doi.org/10.3233/NPM-181796

63. Copetti R, Cattarossi L. The “double lung point”: an ultrasound sign diagnostic of transient tachypnea of the newborn. Neonatology. 2007;91(3):203–209. doi: https://doi.org/10.1159/000097454

64. Sharma D, Farahbakhsh N. Role of chest ultrasound in neonatal lung disease: A review of current evidences. J Matern Fetal Neonatal Med. 2019;32(2):310–316. doi: https://doi.org/10.1080/14767058.2017.1376317

65. Sperandeo M, Rea G, Santantonio A, et al. Lung Ultrasonography in Diagnosis of Transient Tachypnea of the Newborn: Limitations and Pitfalls. Chest. 2016–150(4):977–978. doi: https://doi.org/10.1016/j.chest.2016.06.048

66. Gyamfi-Bannerman C, Thom EA, Blackwell SC, et al. NICHD Maternal-Fetal Medicine Units Network. Antenatal Betamethasone for Women at Risk for Late Preterm Delivery. N Engl J Med. 2016;374(14): 1311–1320. doi: https://doi.org/10.1056/NEJMoa1516783

67. Buchiboyina A, Jasani B, Deshmukh M, Patole S. Strategies for managing transient tachypnoea of the newborn — a systematic review. J Matern Fetal Neonatal Med. 2017;30(13):1524–1532. doi: https://doi.org/10.1080/14767058.2016.1193143

68. Mustafa SB, Isaac J, Seidner SR, et al. Mechanical stretch induces lung α-epithelial Na(+) channel expression. Exp Lung Res. 2014;40(8):380–391. doi: https://doi.org/10.3109/01902148.2014.934410

69. Volodin NN. Neonatologiya: National guidelines. Russian Association of Perinatal Medicine Specialists. Moscow: GEOTAR-Media; 2019. p. 202–203. (In Russ).

70. Ho JJ, Subramaniam P, Davis PG. Continuous distending pressure for respiratory distress in preterm infants. Cochrane Database Syst Rev. 2015;2015(7):CD002271. doi: https://doi.org/10.1002/14651858.CD002271.pub2

71. Subramaniam P, Ho JJ, Davis PG. Prphylactic nasal continu ous positive airway pressure for preventing morbidity and mortality in very preterm infants. Cochrane Database Syst Rev. 2016;(6):CD001243. doi: https://doi.org/10.1002/14651858.CD001243.pub3

72. Osman AM, El-Farrash RA, Mohammed EH. Early rescue Neopuff for infants with transient tachypnea of newborn: A randomized controlled trial. J Matern Fetal Neonatal Med. 2019;32(4):597–603. doi: https://doi.org/10.1080/14767058.2017.1387531

73. Celebi MY, Alan S, Kahvecioglu D, et al. Impact of Prophylactic Continuous Positive Airway Pressure on Transient Tachypnea of the Newborn and Neonatal Intensive Care Admission in Newborns Delivered by Elective Cesarean Section. Am J Perinatol. 2016;33(1):99–106. doi: https://doi.org/10.1055/s-0035-1560041

74. Rocha GM, Flor-De-Lima FS, Guimaraes HA. Persistent grunting respirations after birth. Minerva Pediatr. 2018;70(3):217–224. doi: https://doi.org/10.23736/S0026-4946.16.04490-X

75. Wilkinson D, Andersen C, O’Donnell CP, et al. High flow nasal cannula for respiratory support in preterm infants. Cochrane Database Syst Rev. 2016;2:CD006405. doi: https://doi.org/10.1002/14651858.CD006405.pub3

76. Beggs S, Wong ZH, Kaul S, et al. High-flow nasal cannula therapy for infants with bronchiolitis. Cochrane Database Syst Rev. 2014;(1):CD009609. doi: https://doi.org/10.1002/14651858.CD009609.pub2

77. Mayfield S, Jauncey-Cooke J, Hough JL, et al. High-flow nasal cannula therapy for respiratory support in children. Cochrane Database Syst Rev. 2014;2014(3):CD009850. doi: https://doi.org/10.1002/14651858.CD009850.pub2

78. Lampland AL, Plumm B, Meyers PA, et al. Observational study of humidified high-flow nasal cannula compared with nasal continuous positive airway pressure. J Pediatr. 2009;154(2):177–182. doi: https://doi.org/10.1016/j.jpeds.2008.07.021

79. Lemyre B, Laughon M, Bose C, et al. Early nasal intermittent positive pressure ventilation (NIPPV) versus early nasal continuous positive airway pressure (NCPAP) for preterm infants. Cochrane Database Syst Rev. 2016;12(12):CD005384. doi: https://doi.org/10.1002/14651858.CD005384.pub2

80. Lemyre B, Davis PG, De Paoli AG, Kirpalani H. Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for preterm neonates after extubation. Cochrane Database Syst Rev. 2017;2(2):CD003212. doi: https://doi.org/10.1002/14651858.CD003212.pub3

81. De Luca D, Dell’Orto V. Non-invasive high-frequency oscillatory ventilation in neonates: Review of physiology, biology and clinical data. Arch Dis Child Fetal Neonatal Ed. 2016;101(6):F565–F570. doi: https://doi.org/10.1136/archdischild-2016-310664

82. Fischer HS, Bohlin K, Bührer C, et al. Nasal high-frequency oscillation ventilation in neonates: A survey in five European countries. Eur J Pediatr. 2015;174(4):465–471. doi: https://doi.org/10.1007/s00431-014-2419-y

83. Bottino R, Pontiggia F, Ricci C, et al. Nasal high-frequency oscillatory ventilation and CO2 removal: A randomized controlled crossover trial. Pediatr Pulmonol. 2018;53(9):1245–1251. doi: https://doi.org/10.1002/ppul.24120

84. Klotz D, Schneider H, Schumann S, et al. Non-invasive high-frequency oscillatory ventilation in preterm infants: A randomised controlled cross-over trial. Arch Dis Child Fetal Neonatal Ed. 2018;103(4):F1–F5. doi: https://doi.org/10.1136/archdischild-2017-313190

85. Malakian A, Bashirnezhadkhabaz S, Aramesh MR, et al. Noninvasive high-frequency oscillatory ventilation versus nasal continuous positive airway pressure in preterm infants with respiratory distress syndrome: A randomized controlled trial. J Matern Fetal Neonatal Med. 2020;33(15):2601–2607. doi: https://doi.org/10.1080/14767058.2018.1555810

86. Moresco L, Romantsik O, Calevo MG, et al. Non-invasive respiratory support for the management of transient tachypnea of the newborn. Cochrane Database Syst Rev. 2020;4(4):CD013231. doi: https://doi.org/10.1002/14651858.CD013231.pub2

87. Demirel G, Uras N, Celik IH, et al. Nasal intermittent mandatory ventilation versus nasal continuous positive airway pressure for transient tachypnea of newborn: A randomized, prospective study. J Matern Fetal Neonatal Med. 2013;26(11):1099–1102. doi: https://doi.org/10.3109/14767058.2013.766707

88. Dumas De La Roque E, Bertrand C, Tandonnet O, et al. Nasal high frequency percussive ventilation versus nasal continuous positive airway pressure in transient tachypnea of the newborn: a pilot randomized controlled trial (NCT00556738). Pediatr Pulmonol. 2011;46(3):218–223. doi: https://doi.org/10.1002/ppul.21354

89. Gupta N, Bruschettini M, Chawla D. Fluid restriction in the management of transient tachypnea of the newborn. Cochrane Database Syst Rev. 2021;2(2):CD011466. doi: https://doi.org/10.1002/14651858.CD011466.pub2

90. Kassab M, Khriesat WM, Anabrees J. Diuretics for transient tachypnoea of the newborn. Cochrane Database Syst Rev. 2015; 2015(11):CD003064. doi: https://doi.org/10.1002/14651858.CD003064.pub3

91. Vaisbourd Y, Abu-Raya B, Zangen S, et al. Inhaled corticosteroids in transient tachypnea of the newborn: A randomized, placebocontrolled study. Pediatr Pulmonol. 2017;52(8):1043–1050. doi: https://doi.org/10.1002/ppul.23756

92. Byrjalsen A, Frøslev T, Telén Andersen AB, et al. Use of corticosteroids during pregnancy and risk of asthma in offspring: a nationwide Danish cohort study. BMJ Open. 2014;4(6):e005053. doi: https://doi.org/10.1136/bmjopen-2014-005053

93. Moresco L, Bruschettini M, Cohen A, et al. Salbutamol for transient tachypnea of the newborn. Cochrane Database Syst Rev. 2016;(5):CD011878. doi: https://doi.org/10.1002/14651858.CD011878.pub2

94. Babaei H, Dabiri S, Pirkashani LM, et al. Effects of salbutamol on the treatment of transient tachypnea of the newborn. Iranian Journal of Neonatology. 2019;10(1):42–49. doi: https://doi.org/10.22038/IJN.2018.31294.1430

95. Kao B, Stewart de Ramirez SA, Belfort MB, et al. Inhaled epinephrine for the treatment of transient tachypnea of the newborn. J Perinatol. 2008;28(3):205–210. doi: https://doi.org/10.1038/sj.jp.7211917

96. Vibede L, Vibede E, Bendtsen M, et al. Neonatal Pneumothorax: A Descriptive Regional Danish Study. Neonatology. 2017;111(4): 303–308. doi: https://doi.org/10.1159/000453029

97. Lakshminrusimha S, Keszler M. Persistent Pulmonary Hypertension of the Newborn. Neoreviews. 2015;16(12):e680–e692. doi: https://doi.org/10.1542/neo.16-12-e680

98. Ramachandrappa A, Rosenberg ES, Wagoner S, et al. Morbi dity and mortality in late preterm infants with severe hypoxic respiratory failure on extra-corporeal membrane oxygenation. J Pediatr. 2011;159(2):192–198.e3. doi: https://doi.org/10.1016/j.jpeds.2011.02.015

99. Birnkrant DJ, Picone C, Markowitz W, et al. Association of transient tachypnea of the newborn and childhood asthma. Pediatr Pulmonol. 2006;41(10):978–984. doi: https://doi.org/10.1002/ppul.20481

100. Liem JJ, Huq SI, Ekuma O, et al. Transient tachypnea of the newborn may be an early clinical manifestation of wheezing symptoms. J Pediatr. 2007;151(1):29–33. doi: https://doi.org/10.1016/j.jpeds.2007.02.021

101. Cakan M, Nalbantoğlu B, Nalbantoğlu A, et al. Correlation between transient tachypnea of the newborn and wheezing attack. Pediatr Int. 2011;53(6):1045–1050. doi: https://doi.org/10.1111/j.1442-200X.2011.03438.x


Review

For citations:


Shestak E.V., Kovtun O.P. Transient Tachypnea of the Newborn: Pathogenesis, Diagnosis, Treatment. Current Pediatrics. 2022;21(1):11-18. (In Russ.) https://doi.org/10.15690/vsp.v21i1.2381

Views: 1781


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)