Preview

Current Pediatrics

Advanced search

Visceral Obesity: Terminology, Measurement, and Its Correlation with Inflammation

https://doi.org/10.15690/vsp.v21i4.2433

Abstract

The prevalence of childhood obesity in the world is significant and it is topical issue due to the high risk of chronic non-communicable diseases development. This article presents the analysis of pathogenetic role of visceral obesity, describes modern methods for measuring visceral adipose tissue, discusses major terminology on obesity. The current data on inflammation induced by excess of visceral adipose tissue and inflammasome’s role in this process are summed up. All the findings are crucial for the development of tools for prevention any obesity associated adverse effects in children.

About the Authors

Anna A. Tarabrina
Siberian State Medical University
Russian Federation

Tomsk


Disclosure of interest:

Not declared



Lyudmila M. Ogorodova
Siberian State Medical University
Russian Federation

Tomsk


Disclosure of interest:

Not declared



Olga S. Fedorova
Siberian State Medical University
Russian Federation

Tomsk


Disclosure of interest:

Not declared



References

1. Vasyukova OV. Federal’nye klinicheskie rekomendatsii po diagnostike i lecheniyu ozhireniya u detei i podrostkov. Moscow: Russian Association of Endocrinologists; 2013. pp. 5–8. (In Russ)

2. Suliga E. Visceral adipose tissue in children and adolescents: A review. Nutr Res Rev. 2009;22(2):137–147. doi: https://doi.org/10.1017/S0954422409990096

3. Gaines J, Vgontzas AN, Fernandez-Mendoza J, et al. Increased inflammation from childhood to adolescence predicts sleep apnea in boys: A preliminary study. Brain Behav Immun. 2017;64:259–265. doi: https://doi.org/10.1016/j.bbi.2017.04.011

4. Afshin A, Forouzanfar MH, Reitsma MB, et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N Engl J Med. 2017;377(1):13–27. doi: https://doi.org/10.1056/NEJMoa1614362

5. Obesity and overweight. In: WHO Fact sheets. 09 June 2021. (In Russ). Доступно по: http://www.who.int/mediacentre/factsheets/fs311/ru. Ссылка активна на 12.08.2022.

6. Mladovsky P, Allin S, Masseria C, et al. Health in the European Union. Trends and analysis. World Health Organization; 2009. 164 p.

7. Ozhirenie u detei: Clinical guidelines. Russian Association of Endocrinologists; 2021. pp. 11–12. (In Russ).

8. WHO European Childhood Obesity Surveillance Initiative (COSI): report on the fourth round of data collection, 2015–2017. Copenhagen: WHO Regional Office for Europe; 2021.

9. Eletskaya KA, Namazova-Baranova LS, Kaytukova EV, et al. The Correlation Between Body Weight and Arterial Blood Pressure in 11 and 15 Years Old Children: Retrospective Cross-Sectional Study. Pediatric pharmacology. 2019;16(4):211–215. (In Russ). doi: https://doi.org/10.14341/2071-8713-5141

10. Namazova-Baranova LS, Yeletskaya KA, Kaytukova EV, et al. Evaluation of the Physical Development of Children of Secondary School Age: аn Analysis of the Results of a Cross-Sectional Study. Pediatric pharmacology. 2018;15(4):333–342. (In Russ). doi: https://doi.org/10.15690/pf.v15i4.1948

11. Xia L, Dong F, Gong H, et al. Association between Indices of Body Composition and Abnormal Metabolic Phenotype in Normal-Weight Chinese Adults. Int J Environ Res Public Health. 2017;14(4):391. doi: https://doi.org/10.3390/ijerph14040391

12. Simoni P, Guglielmi R, Aparisi Gomez MP. Imaging of body composition in children. Quant Imaging Med Surg. 2020;10(8): 1661–1671. doi: https://doi.org/10.21037/qims.2020.04.06

13. Gishti O, Gaillard R, Durmus B, et al. BMI, total and abdominal fat distribution, and cardiovascular risk factors in school-age children. Pediatr Res. 2015;77(5):710–718. doi: https://doi.org/10.1038/pr.2015.29

14. Tchernof A, Després JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93(1):359–404. doi: https://doi.org/10.1152/physrev.00033.2011

15. Borodkina DA, Gruzdeva OV, Kvitkova LV, Barbarash OL. Is visceral obesity the cause of obesity paradox? Problems of Endocrinology. 2016;62(6):33-39. (In Russ). doi: https://doi.org/10.14341/probl201662633-39

16. Borga M, West J, Bell JD, et al. Advanced body composition assessment: From body mass index to body composition profiling. J Investig Med. 2018;66(5):1–9. doi: https://doi.org/10.1136/jim-2018-000722

17. Fang H, Berg E, Cheng X, et al. How to best assess abdominal obesity. Curr Opin Clin Nutr Metab Care. 2018;21(5):360–365. doi: https://doi.org/10.1097/MCO.0000000000000485

18. Brel NK, Kokov AN, Gruzdeva OV. Advantages and disadvantages of different methods for diagnosis of visceral obesity. Obesity and metabolism. 2018;15(4):3–8. (In Russ). doi: https://doi.org/10.14341/omet9510

19. Suslyaeva NM. Possibility radiological methods in diagnostics of visceral adiposity. Bulletin of Siberian Medicine. 2010;9(5):121–128. (In Russ). doi: https://doi.org/10.20538/1682-0363-2010-5-121-128

20. Messina C, Albano D, Gitto S, et al. Body composition with dual energy X-ray absorptiometry: from basics to new tools. Quant Imaging Med Surg. 2020;10(8):1687–1698. doi: https://doi.org/10.21037/qims.2020.03.02

21. Podchinenova D.V. Optimizatsiya strategii profilaktiki metabolicheskogo sindroma v pediatricheskoi praktike. [dissertation]. Tomsk; 2019. 153 p. (In Russ).

22. Patent № 2734336 Russian Federation, IPC А61В 5/00 (2006.01), А61В 5/053 (2006.01). Method for Early Non-Invasive Diagnosis of Metabolic Disorders in Children and Adolescents: № 2020112469: declare 27.03.2020: publ. 15.10.2020. Kobyakova OS, Podchinenova DV, Samojlova YuG, et al. 8 p. (In Russ).

23. Soileau L, Bautista D, Johnson C, et al. Automated anthropometric phenotyping with novel Kinect-based three-dimensional imaging method: comparison with a reference laser imaging system. Eur J Clin Nutr. 2016;70(4):475–481. doi: https://doi.org/10.1038/ejcn.2015.132

24. Chumakova GA, Veselovskaya NG. Methods of visceral obesity assessment in clinical practice. Russian Journal of Cardiology. 2016;(4):89–96. (In Russ). doi: https://doi.org/10.15829/1560-4071-2016-4-89-96

25. Ly KV, Armstrong T, Yeh J, et al. Free-breathing Magnetic Resonance Imaging Assessment of Body Composition in Healthy and Overweight Children: An Observational Study. J Pediatr Gastroenterol Nutr. 2019;68(6):782–787. doi: https://doi.org/10.1097/MPG.0000000000002309

26. Drapkina OM, Kupreyshvili LV, Fomin VV. Body composition and its role in development of metabolic disorders and cardiovascular diseases. Cardiovascular Therapy and Prevention. 2017;16(5):81–85. (In Russ). doi: https://doi.org/10.15829/1728-8800-2017-5-81-85

27. Cheung AS, de Rooy C, Hoermann R, et al. Correlation of visceral adipose tissue measured by Lunar Prodigy dual X-ray absorptiometry with MRI and CT in older men. Int J Obes (Lond). 2016;40(8): 1325–1328. doi: https://doi.org/10.1038/ijo.2016.50

28. Bazzocchi A, Filonzi G, Ponti F, et al. Ultrasound: Which role in body composition? Eur J Radiol. 2016;85(8):1469–1480. doi: https://doi.org/10.1016/j.ejrad.2016.04.005

29. Miklishanskaya SV, Zolozova EA, Orlovsky AA, et al. Justification of the need to create a new classification of obesity. Lechaschi Vrach. 2021;(7):58–62. (In Russ). doi: https://doi.org/10.51793/OS.2021.24.7.011

30. Kyle UG, Bosaeus I, De Lorenzo AD, et al. Bioelectrical impedance analysis-part I: review of principles and methods. Clin Nutr. 2004;23(5):1226–1243. doi: https://doi.org/10.1016/j.clnu.2004.06.004

31. List rezul’tatov INBODY: Guide for professionals. (In Russ). Доступно по: https://inbody-ru.ru/u/www/files/Руководство%20для%20профессионалов.pdf. Ссылка активна на 12.08.2022.

32. Zamrazilova H, Hlavaty P, Dusatkova L, et al. A new simple method for estimating trunk and visceral fat by bioelectrical impedance: comparison with magnetic resonance imaging and dual X-ray absorptiometry in Czech adolescents. Cas Lek Cesk. 2010;149(9):417–422.

33. Christaki EV, Pervanidou P, Papassotiriou I, et al. Stress, Inflammation and Metabolic Biomarkers Are Associated with Body Composition Measures in Lean, Overweight, and Obese Children and Adolescents. Children (Basel). 2022;9(2):291. doi: https://doi.org/10.3390/children9020291

34. Bhatt SP, Guleria R, Kabra SK. Metabolic alterations and systemic inflammation in overweight/obese children with obstructive sleep apnea. PLoS One. 2021;16(6):e0252353. doi: https://doi.org/10.1371/journal.pone.0252353

35. Aparecida Silveira E, Vaseghi G, de Carvalho Santos AS, et al. Visceral Obesity and Its Shared Role in Cancer and Cardiovascular Disease: A Scoping Review of the Pathophysiology and Pharmacological Treatments. Int J Mol Sci. 2020;21(23):9042. doi: https://doi.org/10.3390/ijms21239042

36. Nier A, Brandt A, Baumann A, et al. Metabolic Abnormalities in Normal Weight Children Are Associated with Increased Visceral Fat Accumulation, Elevated Plasma Endotoxin Levels and a Higher Monosaccharide Intake. Nutrients. 2019;11(3):652. doi: https://doi.org/10.3390/nu11030652

37. Cota BC, Priore SE, Ribeiro SAV, et al. Cardiometabolic risk in adolescents with normal weight obesity. Eur J Clin Nutr. 2022;76(6):863–870. doi: https://doi.org/10.1038/s41430-021-01037-7

38. Karczewski J, Śledzińska E, Baturo A, et al. Obesity and inflammation. Eur Cytokine Netw. 2018;29(3):83–94. doi: https://doi.org/10.1684/ecn.2018.0415

39. Schipper HS, Nuboer R, Prop S, et al. Systemic inflammation in childhood obesity: circulating inflammatory mediators and activated CD14++ monocytes. Diabetologia. 2012;55(10):2800–2810. doi: https://doi.org/10.1007/s00125-012-2641-y

40. Longo M, Zatterale F, Naderi J, et al. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int J Mol Sci. 2019;20(9):2358. doi: https://doi.org/10.3390/ijms20092358

41. Corona-Meraz F, Anda JR, Madrigal-Ruiz P, et al. Adipose Tissue in Health and Disease. In: Obesity. Cakmur H, ed. London: IntechOpen; 2020. doi: https://doi.org/10.5772/intechopen.90559 Available online: https://www.intechopen.com/chapters/70627. Accessed on August 12, 2022.

42. Fleming CA, O’Connell EP, Kavanagh RG, et al. Body Composition, Inflammation, and 5-Year Outcomes in Colon Cancer. JAMA Netw Open. 2021;4(8):e2115274. doi: https://doi.org/10.1001/jamanetworkopen.2021.15274

43. Engin A. The Pathogenesis of Obesity-Associated Adipose Tissue Inflammation. Adv Exp Med Biol. 2017;960:221–245. doi: https://doi.org/10.1007/978-3-319-48382-5_9

44. Delaney KZ, Vanstone CA, Weiler HA, Santosa S. Regional adiposity and markers of inflammation in pre-school age children. Sci Rep. 2018;8(1):15204. doi: https://doi.org/10.1038/s41598-018-33054-1

45. Mujkić R, Šnajder Mujkić D, Ilić I, et al. Early Childhood Fat Tissue Changes-Adipocyte Morphometry, Collagen Deposition, and Expression of CD163+ Cells in Subcutaneous and Visceral Adipose Tissue of Male Children. Int J Environ Res Public Health. 2021;18(7):3627. doi: https://doi.org/10.3390/ijerph18073627

46. Fang Z, Pyne S, Pyne NJ. Ceramide and sphingosine 1-phosphate in adipose dysfunction. Prog Lipid Res. 2019;74:145–159. doi: https://doi.org/10.1016/j.plipres.2019.04.001

47. Engin AB. Adipocyte-Macrophage Cross-Talk in Obesity. Adv Exp Med Biol. 2017;960:327–343. doi: https://doi.org/10.1007/978-3-319-48382-5_14

48. Rheinheimer J, de Souza BM, Cardoso NS, et al. Current role of the NLRP3 inflammasome on obesity and insulin resistance: A systematic review. Metabolism. 2017;74:1–9. doi: https://doi.org/10.1016/j.metabol.2017.06.002

49. Wu KK, Cheung SW, Cheng KK. NLRP3 Inflammasome Activation in Adipose Tissues and Its Implications on Metabolic Diseases. Int J Mol Sci. 2020;21(11):4184. doi: https://doi.org/10.3390/ijms21114184

50. Crudele L, Piccinin E, Moschetta A. Visceral Adiposity and Cancer: Role in Pathogenesis and Prognosis. Nutrients. 2021;13(6):2101. doi: https://doi.org/10.3390/nu13062101

51. Bonan N, DeCicco-Skinner K. Obesity as a Promoter of Cancer Development and Progression. In: Obesity. Cakmur H, ed. London: IntechOpen; 2018. doi: https://doi.org/10.5772/intechopen.80516 Available online: https://www.intechopen.com/chapters/63165. Accessed on August 12, 2022.

52. Chang HH, Eibl G. Obesity-Induced Adipose Tissue Inflammation as a Strong Promotional Factor for Pancreatic Ductal Adenocarcinoma. Cells. 2019;8(7):673. doi: https://doi.org/10.3390/cells8070673

53. Calcaterra V, Croce S, Vinci F, et al. Th17 and Treg Balance in Children with Obesity and Metabolically Altered Status. Front Pediatr. 2020;8:591012. 2020;8:591012. doi: https://doi.org/10.3389/fped.2020.591012

54. Martinez-Sanchez ME, Hiriart M, Alvarez-Buylla ER. The CD4+ T cell regulatory network mediates inflammatory responses during acute hyperinsulinemia: a simulation study. BMC Syst Biol. 2017;11(1):64. doi: https://doi.org/10.1186/s12918-017-0436-y

55. Tao L, Liu H, Gong Y. Role and mechanism of the Th17/ Treg cell balance in the development and progression of insulin resistance. Mol Cell Biochem. 2019;459(1-2):183–188. doi: https://doi.org/10.1007/s11010-019-03561-4

56. Endo Y, Yokote K, Nakayama T. The obesity-related pathology and Th17 cells. Cell Mol Life Sci. 2017;74(7):1231–1245. doi: https://doi.org/10.1007/s00018-016-2399-3


Review

For citations:


Tarabrina A.A., Ogorodova L.M., Fedorova O.S. Visceral Obesity: Terminology, Measurement, and Its Correlation with Inflammation. Current Pediatrics. 2022;21(4):293-297. (In Russ.) https://doi.org/10.15690/vsp.v21i4.2433

Views: 566


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)