Preview

Вопросы современной педиатрии

Расширенный поиск

Врожденный ихтиоз: клинико-генетические характеристики заболевания

https://doi.org/10.15690/vsp.v21i5.2459

Аннотация

Врожденный ихтиоз — группа (почти 100 клинических вариантов) редких генетических кожных заболеваний, возникающих в результате патогенных изменений в более чем 50 генах. Клиническими признаками, характеризующими ихтиоз независимо от генетической основы, являются сухость кожи, шелушение, гиперкератоз, часто сочетающиеся с эритродермией. Больные имеют чрезвычайно низкое качество жизни вследствие изменения внешнего вида, дискомфорта в связи с зудом и функциональными ограничениями (боль при ходьбе, нарушение моторики и двигательной функции по причине развития очагов гиперкератоза в функционально значимых зонах), а также нарушения функций различных органов и систем при синдромальных формах заболевания. Пациенты нуждаются в ежедневном уходе за кожей и приеме системных препаратов. До настоящего времени не существует эффективных методов лечения ихтиоза. Диагностические трудности при определении клинических форм врожденного ихтиоза обусловлены, с одной стороны, их клинической гетерогенностью, а с другой — сходством внешних проявлений. Трудности дифференциальной диагностики с другими дерматозами особенно актуальны при синдромальной форме заболевания. В настоящем обзоре представлена современная классификация ихтиозов, приведены данные о клинико-генетических вариантах заболевания, диагностических алгоритмах, принятых подходах к терапии больных с этим тяжелым недугом.

Об авторах

Н. Н. Мурашкин
НМИЦ здоровья детей; Первый МГМУ им. И.М. Сеченова (Сеченовский Университет); ЦГМА Управления делами Президента РФ
Россия

Москва


Раскрытие интересов:

получение исследовательских грантов от фармацевтических компаний Janssen, Eli Lilly, Novartis, AbbVie, Pfizer, Amryt Pharma plc. Получение гонораров за научное консультирование от компаний Galderma, Pierre Fabre, Bayer, LEO Pharma, Pfizer, AbbVie



К. О. Аветисян
НМИЦ здоровья детей
Россия

Аветисян Карине Ониковна - врач аллерголог-иммунолог.

119296, Москва, Ломоносовский пр-т, д. 2, стр. 1,  тел.: +7 (495) 967-14-20


Раскрытие интересов:

Автор статьи подтвердил отсутствие конфликта интересов, о котором необходимо сообщить



Р. А. Иванов
НМИЦ здоровья детей; ЦГМА Управления делами Президента РФ
Россия

Москва


Раскрытие интересов:

получение исследовательских грантов от фармацевтической компании Pfizer. Получение гонораров за научное консультирование от компании Pierre Fabre



C. Г. Макарова
НМИЦ здоровья детей; РНИМУ им. Н.И. Пирогова
Россия

Москва


Раскрытие интересов:

Автор статьи подтвердила отсутствие конфликта интересов, о котором необходимо сообщить



Список литературы

1. Oji V, Tadini G, Akiyama M, et al. Revised nomenclature and classification of inherited ichthyoses: results of the First Ichthyosis Consensus Conference in Sorèze 2009. J Am Acad Dermatol. 2010;63(4):607–641. doi: https://doi.org/10.1016/j.jaad.2009.11.020

2. Vahlquist A, Törmä H. Ichthyosis: A Road Model for Skin Research. Acta Derm Venereol. 2020;100(7):adv00097. doi: https://doi.org/10.2340/00015555-3433

3. Sun Q, Burgren NM, Cheraghlou S, et al. The Genomic and Phenotypic Landscape of Ichthyosis: An Analysis of 1000 Kindreds. JAMA Dermatol. 2022;158(1):16–25. doi: https://doi.org/10.1001/jamadermatol.2021.4242

4. Kim Y, Lim KM. Skin barrier dysfunction and filaggrin. Arch Pharm Res. 2021;44(1):36–48. doi: https://doi.org/10.1007/s12272-021-01305-x

5. Ихтиоз у детей: клинические рекомендации. — Союз педиатров России; 2016. — С. 6.

6. Mazereeuw-Hautier J, Vahlquist A, Traupe H, et al. Management of congenital ichthyoses: European guidelines of care, part one. Br J Dermatol. 2019;180(2):272–281. doi: https://doi.org/10.1111/bjd.17203

7. Dabas G, Mahajan R, De D, et al. Managing syndromic congenital ichthyosis at a tertiary care institute-Genotype-phenotype correlations, and novel treatments. Dermatol Ther. 2020; 33(6):e13816. doi: https://doi.org/10.1111/dth.13816

8. Takeichi T, Akiyama M. Inherited ichthyosis: Non-syndromic forms. J Dermatol. 2016;43(3):242–251. doi: https://doi.org/10.1111/1346-8138.13243

9. Paller AS, Renert-Yuval Y, Suprun M, et al. An IL-17-dominant immune profile is shared across the major orphan forms of ichthyosis. J Allergy Clin Immunol. 2017;139(1):152–165. doi: https://doi.org/10.1016/j.jaci.2016.07.019

10. Fischer J, Bourrat E. Genetics of Inherited Ichthyoses and Related Diseases. Acta Derm Venereol. 2020;100(7):adv00096. doi: https://doi.org/10.2340/00015555-3432

11. Mohamad J, Samuelov L, Malchin N, et al. Molecular epidemiology of non-syndromic autosomal recessive congenital ichthyosis in a Middle-Eastern population. Exp Dermatol. 2021;30(9):1290–1297. doi: https://doi.org/10.1111/exd.14345

12. Richard G, Choate K, Milstone L, Bale S. Management of ichthyosis and related conditions gene-based diagnosis and emerging gene-based therapy. Dermatol Ther. 2013;26(1):55–68. doi: https://doi.org/10.1111/j.1529-8019.2012.01553.x

13. Vahlquist A, Fischer J, Törmä H. Inherited Nonsyndromic Ichthyoses: An Update on Pathophysiology, Diagnosis and Treatment. Am J Clin Dermatol. 2018;19(1):51–66. doi: https://doi.org/10.1007/s40257-017-0313-x

14. Fischer J. Autosomal recessive congenital ichthyosis. J Invest Dermatol. 2009;129(6):1319–1321. doi: https://doi.org/10.1038/jid.2009.57

15. Bourrat E, Blanchet-Bardon C, Derbois C, et al. Specific TGM1 mutation profiles in bathing suit and self-improving collodion ichthyoses: phenotypic and genotypic data from 9 patients with dynamic phenotypes of autosomal recessive congenital ichthyosis. Arch Dermatol. 2012;148(10):1191–1195. doi: https://doi.org/10.1001/archdermatol.2012.1947

16. Marukian NV, Hu RH, Craiglow BG, et al. Expanding the Genotypic Spectrum of Bathing Suit Ichthyosis. JAMA Dermatol. 2017;153(6):537–543. doi: https://doi.org/10.1001/jamadermatol.2017.0202

17. Kiely C, Devaney D, Fischer J, et al. Ichthyosis prematurity syndrome: a case report and review of known mutations. Pediatr Dermatol. 2014;31(4):517–518. doi: https://doi.org/10.1111/pde.12320

18. Seidl-Philipp M, Schatz UA, Gasslitter I, et al. Spectrum of ichthyoses in an Austrian ichthyosis cohort from 2004 to 2017. J Dtsch Dermatol Ges. 2020;18(1):17–25. doi: https://doi.org/10.1111/ddg.13968

19. Blunder S, Kõks S, Kõks G, et al. Enhanced Expression of Genes Related to Xenobiotic Metabolism in the Skin of Patients with Atopic Dermatitis but Not with Ichthyosis Vulgaris. J Invest Dermatol. 2018;138(1):98–108. doi: https://doi.org/10.1016/j.jid.2017.08.036

20. Richard G. Autosomal Recessive Congenital Ichthyosis. In: GeneReviews® [Internet]. Adam MP, Mirzaa GM, Pagon RA, et al, eds. Seattle (WA): University of Washington, Seattle; 1993–2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1420. Accessed on October 27, 2022.

21. Traupe H, Fischer J, Oji V. Nonsyndromic types of ichthyoses — an update. J Dtsch Dermatol Ges. 2014;12(2):109–121. doi: https://doi.org/10.1111/ddg.12229

22. Youssefian L, Vahidnezhad H, Saeidian AH, et al. Autosomal recessive congenital ichthyosis: Genomic landscape and phenotypic spectrum in a cohort of 125 consanguineous families. Hum Mutat. 2019;40(3):288–298. doi: https://doi.org/10.1002/humu.23695

23. Sugiura K, Akiyama M. Update on autosomal recessive congenital ichthyosis: mRNA analysis using hair samples is a powerful tool for genetic diagnosis. J Dermatol Sci. 2015;79(1):4–9. doi: https://doi.org/10.1016/j.jdermsci.2015.04.009

24. Simpson JK, Martinez-Queipo M, Onoufriadis A, et al. Genotypephenotype correlation in a large English cohort of patients with autosomal recessive ichthyosis. Br J Dermatol. 2020;182(3): 729–737. doi: https://doi.org/10.1111/bjd.18211

25. Elias PM, Williams ML, Feingold KR. Abnormal barrier function in the pathogenesis of ichthyosis: therapeutic implications for lipid metabolic disorders. Clin Dermatol. 2012;30(3):311–322. doi: https://doi.org/10.1016/j.clindermatol.2011.08.017

26. Zhang H, Ericsson M, Weström S, et al. Patients with congenital ichthyosis and TGM1 mutations overexpress other ARCI genes in the skin: Part of a barrier repair response? Exp Dermatol. 2019;28(10):1164–1171. doi: https://doi.org/10.1111/exd.13813

27. Anker P, Kiss N, Kocsis I, et al. Report of a Novel ALOX12B Mutation in Self-Improving Collodion Ichthyosis with an Overview of the Genetic Background of the Collodion Baby Phenotype. Life (Basel). 2021;11(7):624. doi: https://doi.org/10.3390/life11070624

28. Scott CA, Rajpopat S, Di WL. Harlequin ichthyosis: ABCA12 mutations underlie defective lipid transport, reduced protease regulation and skin-barrier dysfunction. Cell Tissue Res. 2013;351(2):281–288. doi: https://doi.org/10.1007/s00441012-1474-9

29. Elkhatib AM, Omar M. Ichthyosis Fetalis. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK560492. Accessed on October 27, 2022.

30. Akiyama M. ABCA12 mutations and autosomal recessive congenital ichthyosis: a review of genotype/phenotype correlations and of pathogenetic concepts. Hum Mutat. 2010;31(10): 1090–1096. doi: https://doi.org/10.1002/humu.21326

31. Ahmad F, Ahmed I, Alam Q, et al. Variants in the PNPLA1 Gene in Families with Autosomal Recessive Congenital Ichthyosis Reveal Clinical Significance. Mol Syndromol. 2021;12(6):351–361. doi: https://doi.org/10.1159/000516943

32. Esperón-Moldes U, Ginarte Val M, Rodríguez-Pazos L, et al. Novel and Recurrent PNPLA1 Mutations in Spanish Patients with Autosomal Recessive Congenital Ichthyosis; Evidence of a Founder Effect. Acta Derm Venereol. 2019;99(10):894–898. doi: https://doi.org/10.2340/00015555-3227

33. Yamamoto M, Sassa T, Kyono Y, et al. Comprehensive stratum corneum ceramide profiling reveals reduced acylceramides in ichthyosis patient with CERS3 mutations. J Dermatol. 2021;48(4):447–456. doi: https://doi.org/10.1111/13468138.15725

34. Hotz A, Oji V, Bourrat E, et al. Expanding the Clinical and Genetic Spectrum of KRT1, KRT2 and KRT10 Mutations in Keratinopathic Ichthyosis. Acta Derm Venereol. 2016;96(4):473–478. doi: https://doi.org/10.2340/00015555-2299

35. Mo R, Lin M, Lee M, et al. Nonsense mutations in KRT1 caused recessive epidermolytic palmoplantar keratoderma with knuckle pads. J Eur Acad Dermatol Venereol. 2022;36(10):1857–1862. doi: https://doi.org/10.1111/jdv.18189

36. Sato J, Denda M, Nakanishi J, et al. Cholesterol sulfate inhibits proteases that are involved in desquamation of stratum corneum. J Invest Dermatol. 1998;111(2):189–193. doi: https://doi.org/10.1046/j.1523-1747.1998.00244.x

37. Fozia F, Nazli R, Alam Khan S, et al. Novel Homozygous Mutations in the Genes TGM1, SULT2B1, SPINK5 and FLG in Four Families Underlying Congenital Ichthyosis. Genes (Basel). 2021;12(3):373. doi: https://doi.org/10.3390/genes12030373

38. Borská R, Pinková B, Réblová K, et al. Inherited ichthyoses: molecular causes of the disease in Czech patients. Orphanet J Rare Dis. 2019;14(1):92. doi: https://doi.org/10.1186/s13023-019-1076-7

39. Ilchyshyn A, Goldstraw N, Cork MJ, et al. Genotype-phenotype correlation in a large English cohort of patients with autosomal recessive ichthyosis. Br J Dermatol. 2020;182(3):729–737. doi: https://doi.org/10.1111/bjd.18211

40. Frommherz L, Krause A, Kopp J, et al. High rate of self-improving phenotypes in children with non-syndromic congenital ichthyosis: case series from south-western Germany. J Eur Acad Dermatol Venereol. 2021;35(11):2293–2299. doi: https://doi.org/10.1111/jdv.17524

41. Hake L, Süßmuth K, Komlosi K, et al. Quality of life and clinical characteristics of self-improving congenital ichthyosis within the disease spectrum of autosomal-recessive congenital ichthyosis. J Eur Acad Dermatol Venereol. 2022;36(4):582–591. doi: https://doi.org/10.1111/jdv.17873

42. Vahlquist A, Bygum A, Gånemo A, et al. Genotypic and clinical spectrum of self-improving collodion ichthyosis: ALOX12B, ALOXE3, and TGM1 mutations in Scandinavian patients. J Invest Dermatol. 2010;130(2):438–443. doi: https://doi.org/10.1038/jid.2009.346

43. Diociaiuti A, Angioni A, Pisaneschi E, et al. X-linked ichthyosis: Clinical and molecular findings in 35 Italian patients. Exp Derm atol. 2019;28(10):1156–1163. doi: https://doi.org/10.1111/exd.13667

44. Emmert H, Baurecht H, Thielking F, et al. Stratum corneum lipidomics analysis reveals altered ceramide profile in atopic dermatitis patients across body sites with correlated changes in skin microbiome. Exp Dermatol. 2021;30(10):1398–1408. doi: https://doi.org/10.1111/exd.14185

45. Hotz A, Kopp J, Bourrat E, et al. Meta-Analysis of Mutations in ALOX12B or ALOXE3 Identified in a Large Cohort of 224 Patients. Genes (Basel). 2021;12(1):80. doi: https://doi.org/10.3390/genes12010080

46. Ennouri M, Zimmer AD, Bahloul E, et al. Clinical and genetic investigation of ichthyosis in familial and sporadic cases in south of Tunisia: genotype-phenotype correlation. BMC Med Genomics. 2022;15(1):4. doi: https://doi.org/10.1186/s12920-021-01154-z

47. Chamcheu JC, Siddiqui IA, Syed DN, et al. Keratin gene mutations in disorders of human skin and its appendages. Arch Biochem Biophys. 2011;508(2):123–137. doi: https://doi.org/10.1016/j.abb.2010.12.019

48. Diociaiuti A, Castiglia D, Corbeddu M, et al. First Case of KRT2 Epidermolytic Nevus and Novel Clinical and Genetic Findings in 26 Italian Patients with Keratinopathic Ichthyoses. Int J Mol Sci. 2020;21(20):7707. doi: https://doi.org/10.3390/ijms21207707

49. Oji V. Clinical presentation and etiology of ichthyoses. Overview of the new nomenclature and classification. Hautarzt. 2010;61(10):891–902; quiz 903–904. doi: https://doi.org/10.1007/s00105-010-2018-4

50. Smith FJD, Kreuser-Genis IM, Jury CS, et al. Novel and recurrent mutations in keratin 1 cause epidermolytic ichthyosis and palmoplantar keratoderma. Clin Exp Dermatol. 2019;44(5): 528–534. doi: https://doi.org/10.1111/ced.13800

51. Ang-Tiu CU, Nicolas ME. Ichthyosis bullosa of Siemens. J Dermatol Case Rep. 2012;6(3):78–81. doi: https://doi.org/10.3315/jdcr.2012.1107

52. Li Y, Cheng R, Liang J, et al. The first case of a mosaic superficial epidermolytic ichthyosis diagnosed by Ultra-Deep Sequence. Mol Genet Genomic Med. 2020;8(11):e1457. doi: https://doi.org/10.1002/mgg3.1457

53. Reolid A, Carrasco L, Noguera-Morel L, et al. Annular epidermolytic ichthyosis: An exceptional mild subtype of epidermolytic ichthyosis without genotype and phenotype correlation. JAAD Case Rep. 2019;6(1):46–50. doi: https://doi.org/10.1016/j.jdcr.2019.10.026

54. Aĭvazian AA. Acicular ichthyosis (the Curth-Macklin type). Vestn Dermatol Venerol. 1990;(9):64–67.

55. Cook-Norris R, Shook BA, Wells MJ, Stetson CL. Seborrheic distributed papules with palmoplantar hyperkeratosis — quiz case. Diagnosis: Ichthyosis hystrix, Curth-Macklin type. Arch Dermatol. 2005;141(6):779–784. doi: https://doi.org/10.1001/archderm.141.6.779-b

56. Gutierrez JA, Hannoush ZC, Vargas LG, et al. A Novel nonsense Mutation in Keratin 10 Causes a Familial Case of Recessive Epidermolytic Ichthyosis. Mol Genet Genomic Med. 2013;1(2): 108–112. doi: https://doi.org/10.1002/mgg3.6

57. Adya KA, Inamadar AC, Janagond AB, Palit A. Epidermolytic Nevus: An Instance of Mosaic Epidermolytic Ichthyosis. Indian Dermatol Online J. 2020;11(2):272–273. doi: https://doi.org/10.4103/idoj.IDOJ_254_19

58. Guerra L, Diociaiuti A, El Hachem M, et al. Ichthyosis with confetti: clinics, molecular genetics and management. Orphanet J Rare Dis. 2015;10:115. doi: https://doi.org/10.1186/s13023015-0336-4

59. Nomura T. Recombination-induced revertant mosaicism in ichthyosis with confetti and loricrin keratoderma. J Dermatol Sci. 2020;97(2):94–100. doi: https://doi.org/10.1016/j.jdermsci.2019.12.013

60. Shah M, Baral S, Adhikari RC. Erythrokeratoderma variabilis (EKV) — First Nepalese case documenting GJB3 mutation. Skin Health Dis. 2021;1(4):e63. doi: https://doi.org/10.1002/ski2.63

61. Teye K, Hamada T, Krol RP, et al. Homozygous deletion of six genes including corneodesmosin on chromosome 6p21.3 is associated with generalized peeling skin disease. J Dermatol Sci. 2014;75(1):36–42. doi: https://doi.org/10.1016/j.jdermsci.2014.04.003

62. Utsumi D, Yasuda M, Amano H, et al. Hair abnormality in Netherton syndrome observed under polarized light microscopy. J Am Acad Dermatol. 2020;83(3):847–853. doi: https://doi.org/10.1016/j.jaad.2019.08.024

63. Sarri CA, Roussaki-Schulze A, Vasilopoulos Y, et al. Netherton Syndrome: A Genotype-Phenotype Review. Mol Diagn Ther. 2017;21(2):137–152. doi: https://doi.org/10.1007/s40291016-0243-y

64. Sillanpää V, Soratto TAT, Eränkö E, et al. Skin Microbiota and Clinical Associations in Netherton Syndrome. JID Innov. 2021;1(2): 100008. doi: https://doi.org/10.1016/j.xjidi.2021.100008

65. Hashimoto S, Takanari H, Compe E, Egly JM. Dysregulation of LXR responsive genes contribute to ichthyosis in trichothiodyst rophy. J Dermatol Sci. 2020;97(3):201–207. doi: https://doi.org/10.1016/j.jdermsci.2020.01.012

66. Jambhekar SD, Dhongade AR. Tay syndrome. Indian J Pediatr. 2008;75(3):288–290. doi: https://doi.org/10.1007/s12098-008-0062-1

67. Youssefian L, Touati A, Saeidian AH, et al. A novel mutation in ST14 at a functionally significant amino acid residue expands the spectrum of ichthyosis-hypotrichosis syndrome. Orphanet J Rare Dis. 2017;12(1):176. doi: https://doi.org/10.1186/s13023-017-0728-8

68. Nagtzaam IF, Peeters VPM, Vreeburg M, et al. Novel CLDN1 mutation in ichthyosis-hypotrichosis-sclerosing cholangitis syndrome without signs of liver disease. Br J Dermatol. 2018;178(3): e202–e203. doi: https://doi.org/10.1111/bjd.15996

69. Poojary S, Shah KS, Bhalala KB, Hegde AU. CEDNIK syndrome in an Indian patient with a novel mutation of the SNAP29 gene. Pediatr Dermatol. 2019;36(3):372–376. doi: https://doi.org/10.1111/pde.13761

70. Karunakaran S, Thomas B, Menon R, et al. CErebral Dysgenesis, Neuropathy, Ichthyosis, and Keratoderma (CEDNIK) Syndrome with Brain Stem Malformation. Ann Indian Acad Neurol. 2021;24(6): 979–981. doi: https://doi.org/10.4103/aian.AIAN_673_20

71. Fuchs-Telem D, Stewart H, Rapaport D, et al. CEDNIK syndrome results from loss-of-function mutations in SNAP29. Br J Dermatol. 2011;164(3):610–616. doi: https://doi.org/10.1111/j.1365-2133.2010.10133.x

72. Cakmak E, Alagozlu H, Yonem O, et al. Steatohepatitis and liver cirrhosis in Chanarin-Dorfman syndrome with a new ABDH5 mutation. Clin Res Hepatol Gastroenterol. 2012;36(2):e34–e37. doi: https://doi.org/10.1016/j.clinre.2011.12.007

73. van Steensel MA, van Geel M, Nahuys M, et al. A novel connexin 26 mutation in a patient diagnosed with keratitis-ichthyosisdeafness syndrome. J Invest Dermatol. 2002;118(4):724–727. doi: https://doi.org/10.1046/j.1523-1747.2002.01735.x

74. Asgari T, Naji M, Mansouri P, et al. Keratitis-ichthyosis-deafness syndrome: Phenotypic heterogeneity and treatment perspective of patients with p.Asp50Asn GJB2 mutation. Dermatol Ther. 2020;33(6):e14493. doi: https://doi.org/10.1111/dth.14493

75. Coggshall K, Farsani T, Ruben B, et al. Keratitis, ichthyosis, and deafness syndrome: a review of infectious and neoplastic complications. J Am Acad Dermatol. 2013;69(1):127–134. doi: https://doi.org/10.1016/j.jaad.2012.12.965

76. Vornweg J, Gläser S, Ahmad-Anwar M, et al. Identification of compound heterozygous mutations in AP1B1 leading to the newly described recessive keratitis-ichthyosis-deafness (KIDAR) syndrome. Br J Dermatol. 2021;184(6):1190–1192. doi: https://doi.org/10.1111/bjd.19815

77. Alter S, Hotz A, Jahn A, et al. Novel VPS33B mutation in a patient with autosomal recessive keratoderma-ichthyosis-deafness syndrome. Am J Med Genet A. 2018;176(12):2862–2866. doi: https://doi.org/10.1002/ajmg.a.40634

78. Faghihi F, Khamirani HJ, Zoghi S, et al. Phenotypic spectrum of autosomal recessive Keratitis-Ichthyosis-Deafness Syndrome (KIDAR) due to mutations in AP1B1. Eur J Med Genet. 2022;65(3): 104449. doi: https://doi.org/10.1016/j.ejmg.2022.104449

79. Bindu PS. Sjogren-Larsson Syndrome: Mechanisms and Management. Appl Clin Genet. 2020;13:13–24. doi: https://doi.org/10.2147/TACG.S193969

80. Del Brío Castillo R, Squires JE, McKiernan PJ. A novel mutation in VPS33B gene causing a milder ARC syndrome phenotype with prolonged survival. JIMD Rep. 2019;47(1):4–8. doi: https://doi.org/10.1002/jmd2.12027

81. Ito Y, Takeichi T, Igari S, et al. MEDNIK-like syndrome due to compound heterozygous mutations in AP1B1. J Eur Acad Dermatol Venereol. 2021;35(5):e345–e347. doi: https://doi.org/10.1111/jdv.17098

82. Waterham HR, Wanders RJA, Leroy BP. Adult Refsum Disease. In: GeneReviews® [Internet]. Adam MP, Mirzaa GM, Pagon RA, et al., eds. Seattle (WA): University of Washington, Seattle; 1993–2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1353. Accessed on October 27, 2022.

83. Staretz-Chacham O, Schlotawa L, Wormser O, et al. A homozygous missense variant of SUMF1 in the Bedouin population extends the clinical spectrum in ultrarare neonatal multiple sulfatase deficiency. Mol Genet Genomic Med. 2020;8(9):e1167. doi: https://doi.org/10.1002/mgg3.1167

84. Wei M, Han A, Wei L, Ma L. A Neonatal Case With Perinatal Lethal Gaucher Disease Associated With Missense G234E and H413P Heterozygous Mutations. Front Pediatr. 2019;7:201. doi: https://doi.org/10.3389/fped.2019.00201

85. Irurzun I, Natale MI, Agostinelli ML, et al. Ichthyosis follicularis, atrichia and photophobia (IFAP) and hereditary mucoepithelial dysplasia: Two syndromes that share a common clinical spectrum. Pediatr Dermatol. 2021;38(3):568–574. doi: https://doi.org/10.1111/pde.14560

86. Al Mandhari H, Al-Musalhi B, Al Mahroqi N, et al. Ichthyosis prematurity syndrome in two Omani siblings, caused by homozygous c.1A > G mutation in the FATP4 gene. Int J Dermatol. 2021;60(3): 368–371. doi: https://doi.org/10.1111/ijd.15367

87. George R, Santhanam S, Samuel R, et al. Ichthyosis prematurity syndrome caused by a novel missense mutation in FATP4 gene — a case report from India. Clin Case Rep. 2015;4(1):87–89. doi: https://doi.org/10.1002/ccr3.462

88. van Leersum FS, Seyger MMB, Theunissen TEJ, et al. Recessive mosaicism in ABCA12 causes blaschkoid congenital ichthyosiform erythroderma. Br J Dermatol. 2020;182(1):208–211. doi: https://doi.org/10.1111/bjd.18216

89. Ramphul K, Kota V, Mejias SG. Child Syndrome. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507813. Accessed on October 27, 2022.

90. Agud-Dios M, Ortiz Cabrera NV, Noguera-Morel L, et al. Conradi-Hünermann-Happle syndrome with minimal signs. Pediatr Dermatol. 2021;38(6):1592–1593. doi: https://doi.org/10.1111/pde.14852

91. Takeichi T, Akiyama M. KLICK Syndrome Linked to a POMP Mutation Has Features Suggestive of an Autoinflammatory Keratinization Disease. Front Immunol. 2020;11:641. doi: https://doi.org/10.3389/fimmu.2020.00641

92. Dahlqvist J, Törmä H, Badhai J, Dahl N. siRNA silencing of proteasome maturation protein (POMP) activates the unfolded protein response and constitutes a model for KLICK genodermatosis. PLoS One. 2012;7(1):e29471. doi: https://doi.org/10.1371/journal.pone.0029471


Рецензия

Для цитирования:


Мурашкин Н.Н., Аветисян К.О., Иванов Р.А., Макарова C.Г. Врожденный ихтиоз: клинико-генетические характеристики заболевания. Вопросы современной педиатрии. 2022;21(5):362-377. https://doi.org/10.15690/vsp.v21i5.2459

For citation:


Murashkin N.N., Avetisyan K.O., Ivanov R.A., Makarova S.G. Congenital Ichthyosis: Clinical and Genetic Characteristics of the Disease. Current Pediatrics. 2022;21(5):362-377. (In Russ.) https://doi.org/10.15690/vsp.v21i5.2459

Просмотров: 1492


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)