Preview

Current Pediatrics

Advanced search

Features of Staphylococcus Aureus Antibiotic Sensitivity in Children with Atopic Dermatitis

https://doi.org/10.15690/vsp.v22i5.2640

Abstract

Background. Excessive colonization of the skin by various bacteria and fungi can be noted in patients with atopic dermatitis (AD), and the prevalence of secondary infection complications 30–48%. Several studies have shown that Staphylococcus aureus colonization is 60–100% in patients with AD compared to 5–30% in healthy persons from the control group. Moreover, the incidence of methicillinresistant Staphylococcus aureus (MRSA) isolates is up to 10–30% in skin cultures at AD, according to experts. Therapy of AD complicated by secondary infection is one of the crucial challenges of modern dermatology. Mupirocin can be considered as one of the most effective topical antibiotic among others used for etiotropic therapy of infectious complications in AD patients, and it has been confirmed by numerous clinical studies.

Conclusion. Staphylococcus aureus is the most common trigger of AD aggravation. MRSA in AD complicated by secondary infection is difficult to manage as it becomes resistant to many types of antibiotics; however, it shows persistent sensitivity to mupirocin. Mupirocin-based (2%) external agent is the most effective, safe, and preferred therapy variant for AD complicated by secondary infection in pediatrics.

About the Authors

Nikolay N. Murashkin
National Medical Research Center of Children’s Health; Sechenov First Moscow State Medical University; Central State Medical Academy of Department of Presidential Affairs
Russian Federation

Moscow


Disclosure of interest:

receiving research grants from pharmaceutical companies Jansen, Eli Lilly, Novartis. Receiving fees for scientific counseling from companies Galderna, Pierre Fabre, Bayer, Leopharma, Pfizer, AbbVie, Amryt Pharma, Celgene, Mölnlycke Health Care AB, Zeldis Pharma



Alexander I. Materikin
National Medical Research Center of Children’s Health
Russian Federation

Moscow


Disclosure of interest:

receiving research grants from pharmaceutical companies Eli Lilly, Novartis, AbbVie, Amryt Pharma, Jansen, Pfizer, Celgene. Receiving fees for scientific counseling from company Mölnlycke Health Care AB



Roman V. Epishev
National Medical Research Center of Children’s Health
Russian Federation

Москва


Disclosure of interest:

receiving research grants from pharmaceutical companies Eli Lilly, Novartis, AbbVie, Amryt Pharma, Jansen, Pfizer, Celgene. Receiving fees for scientific counseling from company Mölnlycke Health Care AB



Maria A. Leonova
National Medical Research Center of Children’s Health
Russian Federation

Moscow


Disclosure of interest:

Other authors confirmed the absence of a reportable conflict of interests



Leonid A. Opryatin
National Medical Research Center of Children’s Health
Russian Federation

Moscow


Disclosure of interest:

receiving fees for scientific counseling from companies Eli Lilly, Jansen



Roman A. Ivanov
National Medical Research Center of Children’s Health
Russian Federation

Moscow


Disclosure of interest:

Other authors confirmed the absence of a reportable conflict of interests



Alena A. Savelova
National Medical Research Center of Children’s Health
Russian Federation

Moscow


Disclosure of interest:

Other authors confirmed the absence of a reportable conflict of interests



References

1. Weidinger S, Beck LA, Bieber T, et al. Atopic dermatitis. Nat Rev Dis Primers. 2018;4(1):1. doi: https://doi.org/10.1038/s41572-018-0001-z

2. Kotrekhova LP. Diagnostika i ratsional’naya terapiya dermatozov sochetannoi etiologii. Consilium Medicum. Dermatologiya. 2010;(4):6–11. (In Russ).

3. Byrd AL, Deming C, Cassidy SKB, et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci Transl Med. 2017;9(397):eaal4651. doi: https://doi.org/10.1126/scitranslmed.aal4651

4. Kim J, Kim BE, Ahn K, Leung DYM. Interactions between atopic dermatitis and staphylococcus aureus infection: clinical implications. Allergy Asthma Immunol Res. 2019;11(5):593–603. doi: https://doi.org/10.4168/aair.2019.11.5.593

5. Meylan P, Lang C, Mermoud S, et al. Skin colonization by Staphylococcus aureus precedes the clinical diagnosis of atopic dermatitis in infancy. J Invest Dermatol. 2017;137(12):2497–2504. doi: https://doi.org/10.1016/j.jid.2017.07.834

6. Nakatsuji T, Chen TH, Narala S, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med. 2017;9(378):eaah4680. doi: https://doi.org/10.1126/scitranslmed.aah4680

7. Cau L, Williams MR, Butcher AM, et al. Staphylococcus epidermidis protease EcpA can be a deleterious component of the skin microbiome in atopic dermatitis. J Allergy Clin Immunol. 2021;147(3):955–966.e16. doi: https://doi.org/10.1016/j.jaci.2020.06.024

8. Suh L, Coffin S, Leckerman KH, et al. Methicillin-resistant Staphylococcus aureus colonization in children with atopic dermatitis. Pediatr Dermatol. 2008;25(5):528–534. doi: https://doi.org/10.1111/j.1525-1470.2008.00768.x

9. Cho SH, Strickland I, Boguniewicz M, et al. Fibronectin and fibrinogen contribute to the enhanced binding of Staphylococcus aureus to atopic skin. J Allergy Clin Immunol. 2001;108(2): 269–274. doi: https://doi.org/10.1067/mai.2001.117455

10. Petry V, Lipnharski C, Bessa GR, et al. Prevalence of communityacquired methicillin-resistant Staphylococcus aureus and antibiotic resistance in patients with atopic dermatitis in Porto Alegre, Brazil. Int J Dermatol. 2014;53(6):731–735. doi: https://doi.org/10.1111/ijd.12020

11. Schlievert PM, Strandberg KL, Lin YC, et al. Secreted virulence factor comparison between methicillin-resistant and methicillinsensitive Staphylococcus aureus, and its relevance to atopic dermatitis. J Allergy Clin Immunol. 2010;125(1):39–49. doi: https://doi.org/10.1016/j.jaci.2009.10.039

12. Shi B, Leung DYM, Taylor PA, Li H. Methicillin-resistant Staphylococcus aureus colonization is associated with decreased skin commensal bacteria in atopic dermatitis. J Invest Dermatol. 2018;138(7):1668–1671. doi: https://doi.org/10.1016/j.jid.2018.01.022

13. Cavalcante FS, Saintive S, Carvalho Ferreira D, et al. Methicillinresistant Staphylococcus aureus from infected skin lesions present several virulence genes and are associated with the CC30 in Brazilian children with atopic dermatitis. Virulence. 2021;12(1):260–269. doi: https://doi.org/10.1080/21505594.2020.1869484

14. Cavalcante FS, Abad ED, Lyra YC, et al. High prevalence of methicillin resistance and PVL genes among Staphylococcus aureus isolates from the nares and skin lesions of pediatric patients with atopic dermatitis. Braz J Med Biol Res. 2015;48(7):588–594. doi: https://doi.org/10.1590/1414-431X20154221

15. Fleury OM, McAleer MA, Feuillie C, et al. Clumping factor B promotes adherence of Staphylococcus aureus to corneocytes in atopic dermatitis. Infect Immun. 2017;85(6):e00994-16. doi: https://doi.org/10.1128/IAI.00994-16

16. Li S, Villarreal M, Stewart S, et al. Altered composition of epidermal lipids correlates with Staphylococcus aureus colonization status in atopic dermatitis. Br J Dermatol. 2017;177(4):e125–e127. doi: https://doi.org/10.1111/bjd.15409

17. Shi B, Bangayan NJ, Curd E, et al. The skin microbiome is different in pediatric versus adult atopic dermatitis. J Allergy Clin Immunol. 2016;138(4):1233–1236. doi: https://doi.org/10.1016/j.jaci.2016.04.053

18. Melzer M, Eykyn SJ, Gransden WR, et al. Is methicillin resistant Staphylococcus aureus more virulent than methicillinsusceptible S. aureus? A comparative cohort study of British patients with nosocomial infection and bacteremia. Clin Infect Dis. 2003;37(11):1453–1460. doi: https://doi.org/10.1086/379321

19. Ellis MW, Hospenthal DR, Dooley DP, et al. Natural history of community-acquired methicillin-resistant Staphylococcus aureus colonization and infection in soldiers. Clin Infect Dis. 2004;39(7):971–979. doi: https://doi.org/10.1086/423965

20. Balma-Mena A, Lara-Corrales I, Zeller J, et al. Colonization with community-acquired methicillin-resistant Staphylococcus aureus in children with atopic dermatitis: a cross-sectional study. Int J Dermatol. 2011;50(6):682–688. doi: https://doi.org/10.1111/j.1365-4632.2010.04751.x

21. Chaptini C, Quinn S, Marshman G. Methicillin-resistant Staphylococcus aureus in children with atopic dermatitis from 1999 to 2014: A longitudinal study. Australas J Dermatol. 2015; 57(2):122–127. doi: https://doi.org/10.1111/ajd.12371

22. Chung HJ, Jeon HS, Sung H, et al. Epidemiological characteristics of methicillin-resistant Staphylococcus aureus isolates from children with eczematous atopic dermatitis lesions. J Clin Microbiol. 2008;46(3):991–995. doi: https://doi.org/10.1128/JCM.00698-07

23. Gomes PL, Malavige GN, Fernando N, et al. Characteristics of Staphylococcus aureus colonization in patients with atopic dermatitis in Sri Lanka. Clin Exp Dermatol. 2011;36(2):195–200. doi: https://doi.org/10.1111/j.1365-2230.2010.03962.x

24. Matiz C, Tom WL, Eichenfield LF, et al. Children with atopic dermatitis appear less likely to be infected with community acquired methicillin-resistant Staphylococcus aureus: the San Diego experience. Pediatr Dermatol. 2011;28(1):6–11. doi: https://doi.org/10.1111/j.1525-1470.2010.01293.x

25. Huang JT, Abrams M, Tlougan B, et al. Treatment of Staphylococcus aureus colonization in atopic dermatitis decreases disease severity. Pediatrics. 2009;123(5):e808–e814. doi: https://doi.org/10.1542/peds.2008-2217

26. Vaudaux PE, Monzillo V, Francois P, et al. Introduction of the mec element (methicillin resistance) into Staphylococcus aureus alters in vitro functional activities of fibrinogen and fibronectin adhesins. Antimicrob Agents Chemother. 1998;42(3):564–570. doi: https://doi.org/10.1128/AAC.42.3.564

27. Coombs GW, Daly DA, Pearson JC, et al. Community-onset Staphylococcus aureus Surveillance Programme annual report, 2012. Commun Dis Intell Q Rep. 2014;38(1):E59–E69.

28. Coombs GW, Nimmo GR, Pearson JC, et al. Australian Group on Antimicrobial Resistance Hospital-onset Staphylococcus aureus Surveillance Programme annual report, 2011. Commun Dis Intell Q Rep. 2013;37(3):E210–E218.

29. Samtsov АV, Statsenko AV, Hairutdinov VR, Chaplygin AV. Сomparative research of clinical efficience of 3% тетracycline ointment and 2% of mupirocin ointment in pyoderma therapy. Vestnik Dermatologii i Venerologii. 2012;88(3):86–90. (In Russ).

30. Murashkin NN, Gluzmin MI, Skoblikov NE, et al. Role of MRSA strains in the pathogenesis of severe atopic dermatitis in childhood. The ways of remission achievement. Vestnik Dermatologii i Venerologii. 2012;88(1):66–74. (In Russ).

31. Belkova YuA. Pyoderma in Outpatients. Clinical Microbiology and Antimicrobial Chemotherapy = Klinicheskaia mikrobiologiia i antimikrobnaia khimioterapiia. 2005;7(3):255–270. (In Russ).

32. Khoshnood S, Heidary M, Asadi A, et al. A review on mechanism of action, resistance, synergism, and clinical implications of mupirocin against Staphylococcus aureus. Biomed Pharmacother. 2019;109:1809–1818. doi: https://doi.org/10.1016/j.biopha.2018.10.131

33. Sengupta S, Kim HJ, Cho KS, et al. Highly stereoselective synthesis of mupirocin H. Tetrahedron. 2017;73(8):1182–1189. doi: https://doi.org/10.1016/j.tet.2017.01.017

34. Araviiskaia ER, Samtsov AV. Treatment of primary pyoderma and chronic dermatoses complicated by secondary infection: choice of an effective drug. Consilium Medicum. 2021;23(8):682–689. (In Russ). doi: https://doi.org/10.26442/20751753.2021.8.201302

35. Fuller AT, Mellows G, Woodford M, et al. Pseudomonic acid: an antibiotic produced by Pseudomonas fluorescens. Nature. 1971; 234(5329):416-467. doi: https://doi.org/10.1038/234416a0

36. Koning S, van der Sande R, Verhagen AP, et al. Interventions for impetigo. Cochrane Database Syst Rev. 2012;1(1):CD003261. doi: https://doi.org/10.1002/14651858.CD003261.pub3

37. Stefanaki C, Ieronymaki A, Matoula Th, et al. Six-year retrospective review of hospital data on antimicrobial resistance profile of Staphylococcus aureus isolated from skin infections from a single institution in Greece. Antibiotics (Basel). 2017; Dec 20; 6(4):39. https://doi.org/10.3390/antibiotics6040039.

38. Belkova YA, Stratchounski LS, Kretchikova OI, et al. Comparative Efficacy of 0.75% Chloramphenicol Ointment and 2% Mupirocin Ointment in the Treatment of Community-Acquired Skin and Soft Tissue Infections. Clinical Microbiology and Antimicrobial Chemotherapy = Klinicheskaia mikrobiologiia i antimikrobnaia khimioterapiia. 2007; 9(1):57–65. (In Russ).


Review

For citations:


Murashkin N.N., Materikin A.I., Epishev R.V., Leonova M.A., Opryatin L.A., Ivanov R.A., Savelova A.A. Features of Staphylococcus Aureus Antibiotic Sensitivity in Children with Atopic Dermatitis. Current Pediatrics. 2023;22(5):400-405. (In Russ.) https://doi.org/10.15690/vsp.v22i5.2640

Views: 1010


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)