Preview

Вопросы современной педиатрии

Расширенный поиск

Введение прикорма: «окно возможностей» формирования кишечной микробиоты и модулирования иммунных реакций

https://doi.org/10.15690/vsp.v22i6.2663

Аннотация

В обзоре обобщены сведения об этапах формирования кишечной микробиоты у ребенка первого года жизни и становлении иммунных реакций, сопровождающих эти этапы. Показана определяющая роль грудного вскармливания в формировании оптимальной микробиоты и сопряженных с этим процессом иммунных реакций в первом полугодии жизни. Обоснована биологическая целесообразность введения прикорма на этапе второго «окна возможностей» — начиная с 4–6 мес, а также роль продуктов прикорма (в том числе злакового) в становлении микробиоты взрослого типа.

Об авторах

И. А. Беляева
НИИ педиатрии и охраны здоровья детей НКЦ №2 ФГБНУ «РНЦХ им. акад. Б.В. Петровского»; РНИМУ им. Н.И. Пирогова; Морозовская ДГКБ
Россия

Беляева Ирина Анатольевна - доктор медицинских наук, профессор Российской академии наук, заведующая отделом преконцепционной, антенатальной и неонатальной медицины НИИ педиатрии и охраны здоровья детей НКЦ №2 ФГБНУ «РНЦХ им. акад. Б.В. Петровского» Минобрнауки России; профессор кафедры факультетской педиатрии педиатрического факультета ФГАОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России; врач-неонатолог ГБУЗ МДКБ ДЗМ

119333, Москва, ул. Фотиевой, д. 10, к. 1

Тел.: +7 (905) 728-58-02


Раскрытие интересов:

И.А. Беляева — чтение лекций для компаний АО «ПРОГРЕСС», «Акрихин», Bayer, «АстраЗенека»



Л. С. Намазова-Баранова
НИИ педиатрии и охраны здоровья детей НКЦ №2 ФГБНУ «РНЦХ им. акад. Б.В. Петровского»; РНИМУ им. Н.И. Пирогова
Россия

Москва


Раскрытие интересов:

Л.С. Намазова-Баранова — получение исследовательских грантов от фармацевтических компаний «Пьер Фабр», Genzyme Europe B. V., ООО «Астразенека Фармасьютикалз», Gilead / PRA «Фармасьютикал Рисерч Ассошиэйтс СиАйЭс», Teva Branded Pharmaceutical products R&D, Inc / ООО «ППД Девелопмент (Смоленск)», «Сталлержен С.А.» / «Квинтайлс ГезмбХ» (Австрия)



Е. П. Бомбардирова
НИИ педиатрии и охраны здоровья детей НКЦ №2 ФГБНУ «РНЦХ им. акад. Б.В. Петровского»
Россия

Москва


Раскрытие интересов:

Нет



Р. A. Шукенбаева
РНИМУ им. Н.И. Пирогова
Россия

Москва


Раскрытие интересов:

Нет



Т. В. Турти
НИИ педиатрии и охраны здоровья детей НКЦ №2 ФГБНУ «РНЦХ им. акад. Б.В. Петровского»; РНИМУ им. Н.И. Пирогова; НИИ организации здравоохранения и медицинского менеджмента
Россия

Москва


Раскрытие интересов:

Т.В. Турти — чтение лекций для компаний АО «ПРОГРЕСС», «Акрихин»



Список литературы

1. Milani C, Duranti S, Bottacini F, et al. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol Mol Biol Rev. 2017;81(4):e00036-17. doi: https://doi.org/10.1128/MMBR.00036-17

2. Sommer F, Backhed F. The gut microbiota — masters of host development and physiology. Nat Rev Microbiol. 2013;11(4): 227-238. doi: https://doi.org/10.1038/nrmicro2974

3. Turroni F, Milani C, Duranti S, et al. The infant gut microbiome as a microbial organ influencing host well-being. Ital J Pediatr. 2020; 46(1):16. doi: https://doi.org/10.1186/s13052-020-0781-0

4. DeGruttola AK, Low D, Mizoguchi A, et al. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis. 2016;22(5):1137-1150. doi: https://doi.org/10.1097/MIB.0000000000000750

5. Yang T, Santisteban MM, Rodriguez V, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65(6):1331-1340. doi: https://doi.org/10.1161/HYPERTENSIONAHA.115.05315

6. Battson ML, Lee DM, Jarrell DK, et al. Suppression of gut dysbiosis reverses Western diet-induced vascular dysfunction. Am J Physiol Endocrinol Metab. 2018;314(5):E468-E477. doi: https://doi.org/10.1152/ajpendo.00187.2017

7. Simon AK, Hollander GA, McMichael A. Evolution of the Immune System in Humans from Infancy to Old Age. Proc Biol Sci. 2015;282(1821):20143085. doi: https://doi.org/10.1098/rspb.2014.3085

8. Ratsika A, Codagnone MC, O'Mahony S, et al. Priming for Life: Early Life Nutrition and the Microbiota-Gut-Brain Axis. Nutrients. 2021;13(2):423. doi: https://doi.org/10.3390/nu13020423

9. Chu DM, Antony KM, Ma J, et al. The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med. 2016;8(1):77. doi: https://doi.org/10.1186/s13073-016-0330-z

10. Garci'a-Mantrana I, Selma-Royo M, Gonzalez S, et al. Distinct maternal microbiota clusters are associated with diet during pregnancy: Impact on neonatal microbiota and infant growth during the first 18 months of life. Gut Microbes. 2020;11(4):962-978. doi: https://doi.org/10.1080/19490976.2020.1730294

11. Collado M, Isolauri E, Laitinen K, Salminen S. Effect of mother's weight on infant's microbiota acquisition, composition, and activity during early infancy: A prospective follow-up study initiated in early pregnancy. Am J Clin Nutr. 2010;92(5):1023-1030. doi: https://doi.org/10.3945/ajcn.2010.29877

12. Romero R, Hassan SS, Gajer P, et al. The Composition and Stability of the Vaginal Microbiota of Normal Pregnant Women Is Different from That of Non-Pregnant Women. Microbiome. 2014;2(1):4. doi: https://doi.org/10.1186/2049-2618-2-4

13. Romero R, Hassan SS, Gajer P, et al. The Vaginal Microbiota of Pregnant Women Who Subsequently Have Spontaneous Preterm Labor and Delivery and Those with a Normal Delivery at Term. Microbiome. 2014;2:18. doi: https://doi.org/10.1186/2049-2618-2-18

14. Dierikx TH, Visser DH, Benninga MA, et al. The Influence of Prenatal and Intrapartum Antibiotics on Intestinal Microbiota Colonisation in Infants: A Systematic Review. J Infect. 2020;81(2):190-204. doi: https://doi.org/10.1016/j.jinf.2020.05.002

15. Mazzola G, Murphy K, Ross RP, et al. Early Gut Microbiota Perturbations Following Intrapartum Antibiotic Prophylaxis to Prevent Group B Streptococcal Disease. PLoS ONE. 2016;11(6):e0157527. doi: https://doi.org/10.1371/journal.pone.0157527

16. Seedat F, Stinton C, Patterson J, et al. Adverse Events in Women and Children Who Have Received Intrapartum Antibiotic Prophylaxis Treatment: A Systematic Review. BMC Pregnancy Childbirth. 2017;17(1):247. doi: https://doi.org/10.1186/s12884-017-1432-3

17. Stencel-Gabriel K, Gabriel I, Wiczkowski A, et al. Prenatal priming of cord blood T lymphocytes by microbiota in the maternal vagina. Am J Reprod Immunol. 2009;61(3):246-252. https://doi.org/10.1111/j.1600-0897.2009.00687.x

18. De Aguero MG, Ganal-Vonarburg SC, Fuhrer T, et al. The Maternal Microbiota Drives Early Postnatal Innate Immune Development. Science. 2016;351(6279):1296-1302. doi: https://doi.org/10.1126/science.aad2571

19. Bailey MT, Lubach GR, Coe CL. Prenatal Stress Alters Bacterial Colonization of the Gut in Infant Monkeys. J Pediatr Gastroenterol Nutr. 2004;38(4):414-421. doi: https://doi.org/10.1097/00005176-200404000-00009

20. Mold JE, Michaëlsson J, Burt TD, et al. Maternal Alloantigens Promote the Development of Tolerogenic Fetal Regulatory T Cells in Utero. Science. 2008;322(5907):1562-1565. doi: https://doi.org/10.1126/science.1164511

21. Marchant A, Appay V, Van Der Sande M, et al. Mature CD8(+) T Lymphocyte Response to Viral Infection during Fetal Life. J Clin Investig. 2003;111(11):1747-1755. doi: https://doi.org/10.1172/JCI200317470

22. Perez-Munoz ME, Arrieta MC, Ramer-Tait AE, et al. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017;5(1):48. doi: https://doi.org/10.1186/s40168-017-0268-4

23. Lauder AP, Roche AM, Sherrill-Mix S, et al. Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome. 2016;4(1):29. doi: https://doi.org/10.1186/s40168-016-0172-3

24. Palmer C, Bik EM, DiGiulio DB, et al. Development of the Human Infant Intestinal. Microbiota. PLoS Biol. 2007;5(7):e177. doi: https://doi.org/10.1371/journal.pbio.0050177

25. Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, et al. Partial Restoration of the Microbiota of Cesarean-Born Infants via Vaginal Microbial Transfer. Nat Med. 2016;22(3):250-253. doi: https://doi.org/10.1038/nm.4039

26. Fettweis JM, Serrano MG, Brooks JP, et al. The Vaginal Microbiome and Preterm Birth. Nat Med. 2019;25(6):1012-1021. doi: https://doi.org/10.1038/s41591-019-0450-2

27. Calder PC, Krauss-Etschmann S, de Jong EC, et al. Early Nutrition and Immunity — Progress and Perspectives. Br J Nutr. 2006;96(4):774-790. doi: https://doi.org/10.1079/BJN20061917

28. McDavid A, Laniewski N, Grier A, et al. Aberrant Newborn T Cell and Microbiota Developmental Trajectories Predict Respiratory Compromise during Infancy. iScience. 202;25(4):104007. doi: https://doi.org/10.1016/j.isci.2022.104007

29. Miyoshi J, Bobe AM, Miyoshi S, et al. Peripartum Antibiotics Promote Gut Dysbiosis, Loss of Immune Tolerance, and Inflammatory Bowel Disease in Genetically Prone Offspring. Cell Rep. 2017;20(2):491-504. doi: https://doi.org/10.1016/j.celrep.2017.06.060

30. Sidener HM, Park B, Gao L. Effect of Antibiotic Administration during Infancy on Growth Curves through Young Adulthood in Rhesus Macaques (Macaca Mulatta). Comp Med. 2017;67(3):270-276.

31. Al Nabhani Z, Eberl G. Imprinting of the Immune System by the Microbiota Early in Life. Mucosal Immunol. 2020;13(2):183-189. doi: https://doi.org/10.1038/s41385-020-0257-y

32. Arrieta MC, Stiemsma LT, Dimitriu PA, et al. Early Infancy Microbial and Metabolic Alterations Affect Risk of Childhood Asthma. Sci Transl Med. 2015;7(307):307ra152. doi: https://doi.org/10.1126/scitranslmed.aab2271

33. Tamburini S, Shen N, Wu HC, Clemente JC. The Microbiome in Early Life: Implications for Health Outcomes. Nat Med. 2016;22(7):713-722. doi: https://doi.org/10.1038/nm.4142

34. Lokossou GAG, Kouakanou L, Schumacher A, Zenclussen AC. Human Breast Milk: From Food to Active Immune Response With Disease Protection in Infants and Mothers. Front Immunol. 2022;13:849012. doi: https://doi.org/10.3389/fimmu.2022.849012

35. Gopalakrishna KP, Hand TW. Influence of Maternal Milk on the Neonatal Intestinal Microbiome. Nutrients. 2020;12(3):823. doi: https://doi.org/10.3390/nu12030823

36. Molès JP Tuaillon E, Kankasa C, et al. Breastmilk Cell Trafficking Induces Microchimerism-Mediated Immune System Maturation in the Infant. Pediatr Allergy Immunol. 2018;29(2):133-143. doi: https://doi.org/10.1111/pai.12841

37. Murphy K, Curley D, O'Callaghan TF, et al. The Composition of Human Milk and Infant Faecal Microbiota Over the First Three Months of Life: A Pilot Study. Sci Rep. 2017;7:40597. doi: https://doi.org/10.1038/srep40597

38. Pärnänen K, Karkman A, Hultman J, et al. Maternal Gut and Breast Milk Microbiota Affect Infant Gut Antibiotic Resistome and Mobile Genetic Elements. Nat Commun. 2018;9(1):3891. doi: https://doi.org/10.1038/s41467-018-06393-w

39. Laouar A. Maternal Leukocytes and Infant Immune Programming during Breastfeeding. Trends Immunol. 2020;41(3):225-239. doi: https://doi.org/10.1016/j.it.2020.01.005

40. Koch S, Hufnagel M, Theilacker C, Huebner J. Enterococcal Infections: Host Response, Therapeutic, and Prophylactic Possibilities. Vaccine. 2004;22(7):822-830. doi: https://doi.org/10.1016/j.vaccine.2003.11.027

41. Torow N, Dittrich-Breiholz O, Hornef MW. Transcriptional Profiling of Intestinal CD4+ T Cells in the Neonatal and Adult Mice. Genom Data. 2015;5:371-374. doi: https://doi.org/10.1016/j.gdata.2015.07.009

42. Dettmer AM, Allen JM, Jaggers RM, Bailey MT. A Descriptive Analysis of Gut Microbiota Composition in Differentially-Reared Infant Rhesus Monkeys (Macaca Mulatta) across the First Six Months of Life. Am J Primatol. 2019;81(10-11):e22969. doi: https://doi.org/10.1002/ajp.22969

43. Ardeshir A, Narayan NR, Méndez-Lagares G, et al. Breast-Fed and Bottle-Fed Infant Rhesus Macaques Develop Distinct Gut Microbiotas and Immune Systems. Sci Transl Med. 2014;6(252): 252ra120. doi: https://doi.org/10.1126/scitranslmed.3008791

44. Narayan NR, Méndez-Lagares G, Ardeshir A, et al. Persistent Effects of Early Infant Diet and Associated Microbiota on the Juvenile Immune System. Gut Microbes. 2015;6(4):284-289. doi: https://doi.org/10.1080/19490976.2015.1067743

45. Laursen MF, Bahl MI, Michaelsen KF, Licht TR. First Foods and Gut Microbes. Front Microbiol. 2017;8:356. doi: https://doi.org/10.3389/fmicb.2017.00356

46. Magne F, Hachelaf W, Suau A, et al. A Longitudinal Study of Infant Faecal Microbiota during Weaning. FEMS Microbiol Ecol. 2006;58(3):563-571. doi: https://doi.org/10.1111/j.1574-6941.2006.00182.x

47. Программа оптимизации вскармливания детей первого года жизни в Российской Федерации: методические рекомендации. — М.: НМИЦ здоровья детей; 2019. — 112 с.

48. Koenig JE, Spor A, Scalfone N, et al. Succession of Microbial Consortia in the Developing Infant Gut Microbiome. Proc Natl Acad Sci USA. 2011;108(Suppl 1):4578-4585. doi: https://doi.org/10.1073/pnas.1000081107

49. Laursen MF, Andersen LBB, Michaelsen KF, et al. Infant gut microbiota development is driven by transition to family foods independent of maternal obesity. mSphere. 2016;1(1):e00069-15. doi: https://doi.org/10.1128/mSphere.00069-15

50. Knoop KA, Gustafsson JK, McDonald KG, et al. Microbial Antigen Encounter during a Preweaning Interval Is Critical for Tolerance to Gut Bacteria. Sci Immunol. 2017;2(18):eaao1314. doi: https://doi.org/10.1126/sciimmunol.aao1314

51. Al Nabhani Z, Dulauroy S, Marques R, et al. A Weaning Reaction to Microbiota Is Required for Resistance to Immunopathologies in the Adult. Immunity. 2019;50(5):1276-1288.e5. doi: https://doi.org/10.1016/j.immuni.2019.02.014

52. Mao K, Baptista AP, Tamoutounour S, et al. Innate and Adaptive Lymphocytes Sequentially Shape the Gut Microbiota and Lipid Metabolism. Nature. 2018;554(7691):255-259. doi: https://doi.org/10.1038/nature25437

53. Vatanen T, Kostic AD, d'Hennezel E, et al. Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans. Cell. 2016;165(4):842-853. doi: https://doi.org/10.1016/j.cell.2016.04.007

54. Mosca A, Leclerc M, Hugot JP. Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem? Front Microbiol. 2016;7:455. doi: https://doi.org/10.3389/fmicb.2016.00455

55. Abrahamsson TR, Jakobsson HE, Andersson AF, et al. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol. 2012;129(2):434-440. doi: https://doi.org/10.1016/j.jaci.2011.10.025

56. Abrahamsson TR, Jakobsson HE, Andersson AF, et al. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy. 2014;44(6):842-850. doi: https://doi.org/10.1111/cea.12253

57. Kostic AD, Gevers D, Siljander H, et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe. 2015;17(2):260-273. doi: https://doi.org/10.1016/j.chom.2015.01.001

58. Ivarsson A, Persson LA, Nystrom L, et al. Epidemic of Coeliac Disease in Swedish Children. Acta Paediatr. 2000;89(2):165-171. doi: https://doi.org/10.1111/j.1651-2227.2000.tb01210.x

59. Ivarsson A, Myleus A, Norstrom F, et al. Prevalence of Childhood Celiac Disease and Changes in Infant Feeding. Pediatrics. 2013;131(3):e687-e694. doi: https://doi.org/10.1542/peds.2012-1015

60. Chassin C, Kocur M, Pott J, et al. MiR-146a Mediates Protective Innate Immune Tolerance in the Neonate Intestine. Cell Host Microbe. 2010;8(4):358-368. doi: https://doi.org/10.1016/j.chom.2010.09.005

61. Сорвачева Т.Н. «Первый выбор» должен быть правильным! // Эффективная фармакотерапия. Педиатрия. — 2015. — № 4-5. — С. 38-41. [Sorvacheva T.N. “Pervyi vybor” dolzhen byt' pravil'nym! Effektivnaya farmakoterapiya. Pediatriya. 2015;(4-5):38-41. (In Russ).]

62. Codex Alimentarius. Standard for Processed Cereal-Based Foods for Infants and Young Children. CODEX STAN 74-1981. Available online: https://www.isdi.org/wp-content/uploads/2020/04/CXS-74-1981.pdf. Accessed on November 30, 2023.

63. Agostoni C, Decsi T, Fewtrell M, et al. Complementary feeding: A commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2008;46(1):99-110. doi: https://doi.org/10.1097/01.mpg.0000304464.60788.bd

64. Grimes CA, Szymlek-Gay EA, Campbell KJ, Nicklas TA. Food sources of total energy and nutrients among US infants and toddlers: National Health and Nutrition Examination Survey 2005-2012. Nutrients. 2015;7(8):6797-6836. doi: https://doi.org/10.3390/nu7085310

65. Finn K, Callen C, Bhatia J, et al. Importance of dietary sources of iron in infants and toddlers: Lessons from the FITS study. Nutrients. 2017;9(7):733. doi: https://doi.org/10.3390/nu9070733

66. Fardet A. New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fiber? Nutr Res Rev. 2010;23(1):65-134. doi: https://doi.org/10.1017/S0954422410000041

67. Fallani M, Amarri S, Uusijarvi A, et al. Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiology. 2011;157(Pt 5):1385-1392. doi: https://doi.org/10.1099/mic.0.042143-0

68. Gamage HK, Tetu SG, Chong RW, et al. Cereal products derived from wheat, sorghum, rice and oats alter the infant gut microbiota in vitro. Sci Rep. 2017;7(1):14312. doi: https://doi.org/10.1038/s41598-017-14707-z

69. Vriezinga SL, Auricchio R, Bravi E, et al. Randomized feeding intervention in infants at high risk for celiac disease. N Engl J Med. 2014;371(14):1304-1315. doi: https://doi.org/10.1056/NEJMoa1404172

70. Dalmau Serra J, Moreno Villares J. Alimentacion complementaria: Puesta al día. Pediatr Integral. 2017;21(1):47.e1-47.e4.

71. Fewtrell M, Bronsky J, Campoy C, et al. Complementary feeding: A position paper by the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2017;64(1):119-132. doi: https://doi.org/10.1097/MPG.0000000000001454

72. Klerks M, Bernal MJ, Roman S, et al. Infant Cereals: Current Status, Challenges, and Future Opportunities for Whole Grains. Nutrients. 2019;11(2):473. doi: https://doi.org/10.3390/nu11020473

73. Plaza-Diaz J, Bernal MJ, Schutte S, et al. Effects of WholeGrain and Sugar Content in Infant Cereals on Gut Microbiota at Weaning: A Randomized Trial. Nutrients. 2021;13(5):1496. doi: https://doi.org/10.3390/nu13051496

74. Pham VT, Greppi A, Chassard C, et al. Stepwise establishment of functional microbial groups in the infant gut between 6 months and 2 years: A prospective cohort study. Front Nutr. 2022;9:948131. doi: https://doi.org/10.3389/fnut.2022.948131

75. Rachmühl C, Lacroix C, Giorgetti A, et al. Validation of a batch cultivation protocol for fecal microbiota of Kenyan infants. BMC Microbiol. 2023;23(1):174. doi: https://doi.org/10.1186/s12866-023-02915-9


Рецензия

Для цитирования:


Беляева И.А., Намазова-Баранова Л.С., Бомбардирова Е.П., Шукенбаева Р.A., Турти Т.В. Введение прикорма: «окно возможностей» формирования кишечной микробиоты и модулирования иммунных реакций. Вопросы современной педиатрии. 2023;22(6):506-512. https://doi.org/10.15690/vsp.v22i6.2663

For citation:


Belyaeva I.A., Namazova-Baranova L.S., Bombardirova E.P., Shukenbayeva R.A., Turti T.V. Supplemental Feeding Implementation: Window of Opportunities for the Intestinal Microbiota Development and Immune Responses Modulation. Current Pediatrics. 2023;22(6):506-512. (In Russ.) https://doi.org/10.15690/vsp.v22i6.2663

Просмотров: 637


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)