Preview

Current Pediatrics

Advanced search

Brain Morphometry is an Advanced Method of Neuroimaging Mapping in Children

https://doi.org/10.15690/vsp.v22i6.2707

Abstract

The use of magnetic resonance imaging in morphometry, as quantitative assessment of brain parameters (thickness, surface area, volume), allows to detect changes in many neuropsichiatric conditions that were previously considered intact. This article provides data on neuroimaging brain morphometry and effective use of this method in neurosciences.

About the Authors

Alexey I. Firumyants
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
Russian Federation

Moscow


Disclosure of interest:

None



Leyla S. Namazova-Baranova
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University
Russian Federation

Moscow


Disclosure of interest:

Leyla S. Namazova-Baranova — receiving research grants from pharmaceutical companies Pierre Fabre, Genzyme Europe B. V., Astra Zeneca PLC, Gilead / PRA “Pharmaceutical Research Associates CIS”, Teva Branded Pharmaceutical products R&D, Inc / “PPD Development (Smolensk)” LLC, “Stallerzhen S.A.” / “Quintiles GMBH” (Austria)



George A. Karkashadze
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
Russian Federation

Moscow


Disclosure of interest:

George A. Karkashadze — lecturing for pharmaceutical companies Sanofi, Geropharm



Olga P. Kovtun
Ural State Medical University
Russian Federation

Ekaterinburg


Disclosure of interest:

None



Viktor V. Dyachenko
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
Russian Federation

Moscow


Disclosure of interest:

None



Nikita S. Shilko
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
Russian Federation

Moscow


Disclosure of interest:

None



Elena N. Rudenko
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
Russian Federation

Moscow


Disclosure of interest:

None



Alexey V. Meshkov
Multidisciplinary clinic “Health-365”
Russian Federation

Ekaterinburg


Disclosure of interest:

None



Natalia S. Sergienko
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
Russian Federation

Moscow


Disclosure of interest:

None



Yuliya V. Nesterova
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
Russian Federation

Moscow


Disclosure of interest:

None



Leonid M. Yatsick
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
Russian Federation

Moscow


Disclosure of interest:

None



Anastasiya I. Rykunova
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
Russian Federation

Moscow


Disclosure of interest:

None



References

1. van Erp TGM, Walton E, Hibar DP, et al. Cortical Brain Abnormalities in 4474 Individuals With Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium. Biol Psychiatry. 2018;84(9): 644–654. doi: https://doi.org/10.1016/j.biopsych.2018.04.023

2. Opel N, Goltermann J, Hermesdorf M, et al. Cross-Disorder Analysis of Brain Structural Abnormalities in Six Major Psychiatric Disorders: A Secondary Analysis of Mega- and Meta-analytical Findings From the ENIGMA Consortium. Biol Psychiatry. 20201;88(9):678–686. doi: https://doi.org/10.1016/j.biopsych.2020.04.027

3. Vetter NC, Backhausen LL, Buse J, et al. Altered brain morphology in boys with attention deficit hyperactivity disorder with and without comorbid conduct disorder/oppositional defiant disorder. Hum Brain Mapp. 2020;41(4):973–983. doi: https://doi.org/10.1002/hbm.24853

4. Arribarat G, Peran P. Quantitative MRI markers in Parkinson’s disease and parkinsonian syndromes. Curr Opin Neurol. 2020;33(2):222–229. doi: https://doi.org/10.1097/WCO.0000000000000796

5. Dipietro L, Gonzalez-Mego P, Ramos-Estebanez C, et al. The evolution of Big Data in neuroscience and neurology. J Big Data. 2023; 10(1):116. doi: https://doi.org/10.1186/s40537-023-00751-2

6. Martínez K, Colom R. Imaging the Intelligence of Humans. In: The Cambridge Handbook of Intelligence and Cognitive Neuroscience. Barbey AK, Karama S, Haier RJ, eds. Cambridge University Press; 2021. pp. 44–69. doi: https://doi.org/10.1017/9781108635462

7. Gaser C. Structural MRI: Morphometry. In: Neuroeconomics. Reuter M, Montag C, eds. Springer Berlin, Heidelberg; 2016. pp. 399–409. doi: https://doi.org/10.1007/978-3-642-35923-1

8. Marquand AF, Kia SM, Zabihi M, et al. Conceptualizing mental disorders as deviations from normative functioning. Mol Psychiatry. 2019;24(10):1415–1424. doi: https://doi.org/10.1038/s41380-019-0441-1

9. Shah PJ, Ebmeier KP, Glabus MF, Goodwin GM. Cortical grey matter reductions associated with treatment-resistant chronic unipolar depression. Controlled magnetic resonance imaging study. Br J Psychiatry. 1998;172:527–532. doi: https://doi.org/10.1192/bjp.172.6.527

10. Hayashi T, Hou Y, Glasser MF, et al. The nonhuman primate neuroimaging and neuroanatomy project. Neuroimage. 2021;229: 117726. doi: https://doi.org/10.1016/j.neuroimage.2021.117726

11. Hoogman M, Muetzel R, Guimaraes JP, et al. Brain Imaging of the Cortex in ADHD: A Coordinated Analysis of Large-Scale Clinical and Population-Based Samples. Am J Psychiatry. 2019;176(7): 531–542. doi: https://doi.org/10.1176/appi.ajp.2019.18091033

12. Kong XZ, Postema MC, Guadalupe T, et al. Mapping brain asymmetry in health and disease through the ENIGMA consortium. Hum Brain Mapp. 2022;43(1):167–181. doi: https://doi.org/10.1002/hbm.25033

13. Grasby KL, Jahanshad N, Painter JN, et al. The genetic architecture of the human cerebral cortex. Science. 2020 Mar 20;367(6484):eaay6690. doi: https://doi.org/10.1126/science.aay6690

14. Bookheimer SY, Salat DH, Terpstra M, et al. The Lifespan Human Connectome Project in Aging: An overview. Neuroimage. 2019;185:335–348. doi: https://doi.org/10.1016/j.neuroimage.2018.10.009

15. Hoogman M, Bralten J, Hibar DP, et al. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. Lancet Psychiatry. 2017;4(4):310–319. doi: https://doi.org/10.1016/S2215-0366(17)30049-4

16. van Rooij D, Anagnostou E, Arango C, et al. Cortical and Subcortical Brain Morphometry Differences Between Patients With Autism Spectrum Disorder and Healthy Individuals Across the Lifespan: Results From the ENIGMA ASD Working Group. Am J Psychiatry. 2018;175(4):359–369. doi: https://doi.org/10.1176/appi.ajp.2017.17010100

17. Nam KW, Castellanos N, Simmons A, et al. Alterations in cortical thickness development in preterm-born individuals: Implications for high-order cognitive functions. Neuroimage. 2015;115:64–75. doi: https://doi.org/10.1016/j.neuroimage.2015.04.015

18. Vargha -Khadem F, Watkins KE, Price CJ, et al. Neural basis of an inherited speech and language disorder. Proc Natl Acad Sci U S A. 1998;95(21):12695–12700. doi: https://doi.org/10.1073/pnas.95.21.12695

19. Wright IC, Ellison ZR, Sharma T, et al. Mapping of grey matter changes in schizophrenia. Schizophr Res. 1999;35(1):1–14. doi: https://doi.org/10.1016/s0920-9964(98)00094-2

20. Wright IC, McGuire PK, Poline JB, et al. A voxel-based method for the statistical analysis of gray and white matter density applied to schizophrenia. Neuroimage. 1995;2(4):244–252. doi: https://doi.org/10.1006/nimg.1995.1032

21. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999;9(2):179–194. doi: https://doi.org/10.1006/nimg.1998.0395

22. Ai L, Craddock RC, Tottenham N, et al. Is it time to switch your T1W sequence? Assessing the impact of prospective motion correction on the reliability and quality of structural imaging. Neuroimage. 2021;226:117585. doi: https://doi.org/10.1016/j.neuroimage.2020.117585

23. Ashburner J, Friston KJ. Voxel-based morphometry — the methods. Neuroimage. 2000;11(6 Pt 1):805–821. doi: https://doi.org/10.1006/nimg.2000.0582

24. De Bellis MD, Keshavan MS, Beers SR, et al. Sex differences in brain maturation during childhood and adolescence. Cereb Cortex. 2001;11(6):552–557. doi: https://doi.org/10.1093/cercor/11.6.552

25. Backhausen LL, Herting MM, Tamnes CK, Vetter NC. Best Practices in Structural Neuroimaging of Neurodevelopmental Disorders. Neuropsychol Rev. 2022;32(2):400–418. doi: https://doi.org/10.1007/s11065-021-09496-2

26. Dong HM, Castellanos FX, Yang N, et al. Charting brain growth in tandem with brain templates at school age. Sci Bull (Beijing). 2020;65(22):1924–1934. doi: https://doi.org/10.1016/j.scib.020.07.027

27. Raznahan A, Shaw P, Lalonde F, et al. How does your cortex grow? J Neurosci. 2011;31(19):7174–7177. doi: https://doi.org/10.1523/JNEUROSCI.0054-11.2011

28. Greve DN. An Absolute Beginner’s Guide to Surface- and Voxel-based Morphometric Analysis. In: Proceedings of the International Society for Magnetic Resonance in Medicine. 2011. vol. 19. p. 33.

29. Noorde rmeer SDS, Luman M, Greven CU, et al. Structural Brain Abnormalities of Attention-Deficit/Hyperactivity Disorder With Oppositional Defiant Disorder. Biol Psychiatry. 2017;82(9): 642–650. doi: https://doi.org/10.1016/j.biopsych.2017.07.008

30. Whitwell JL. Voxel-based morphometry: an automated technique for assessing structural changes in the brain. J Neurosci. 2009; 29(31):9661–9664. doi: https://doi.org/10.1523/JNEUROSCI.2160-09.2009

31. Li Z, Zhang J, Wang F, et al. Surface-based morphometry study of the brain in benign childhood epilepsy with centrotemporal spikes. Ann Transl Med. 2020;8(18):1150. doi: https://doi.org/10.21037/atm-20-5845

32. Fischl B. FreeSurfer. Neuroimage. 2012;62(2):774–781. doi: https://doi.org/10.1016/j.neuroimage.2012.01.021

33. Winkler AM, Kochunov P, Blangero J, et al. Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage. 2010;53(3):1135–1146. doi: https://doi.org/10.1016/j.neuroimage.2009.12.028

34. Pua EPK, Barton S, Williams K, et al. Individualised MRI training for paediatric neuroimaging: A child-focused approach. Dev Cogn Neurosci. 2020;41:100750. doi: https://doi.org/10.1016/j.dcn.2019.100750

35. Raschle NM, Lee M, Buechler R, et al. Making MR imaging child’s play — pediatric neuroimaging protocol, guidelines and procedure. J Vis Exp. 2009;(29):1309. doi: https://doi.org/10.3791/1309

36. Reuter M, Tisdall MD, Qureshi A, et al. Head motion during MRI acquisition reduces gray matter volume and thickness estimates. Neuroimage. 2015;107:107–115. doi: https://doi.org/10.1016/j.neuroimage.2014.12.006

37. Tijsse n RH, Jansen JF, Backes WH. Assessing and minimizing the effects of noise and motion in clinical DTI at 3 T. Hum Brain Mapp. 2009;30(8):2641–2655. doi: https://doi.org/10.1002/hbm.20695

38. Barisano G, Sepehrband F, Ma S, et al. Clinical 7 T MRI: Are we there yet? A review about magnetic resonance imaging at ultra-high field. Br J Radiol. 2019;92(1094):20180492. doi: https://doi.org/10.1259/bjr.20180492

39. Backhausen LL, Herting MM, Buse J, et al. Quality Control of Structural MRI Images Applied Using FreeSurfer-A Hands-On Workflow to Rate Motion Artifacts. Front Neurosci. 2016;10:558. doi: https://doi.org/10.3389/fnins.2016.00558

40. Desikan RS, Ségonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31(3):968–980. doi: https://doi.org/10.1016/j.neuroimage.2006.01.021

41. Destrieux C, Fischl B, Dale A, Halgren E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage. 2010;53(1):1–15. doi: https://doi.org/10.1016/j.neuroimage.2010.06.010

42. Ma J, Miller MI, Younes L. A bayesian generative model for surface template estimation. Int J Biomed Imaging. 2010:2010:974957. doi: https://doi.org/10.1155/2010/974957

43. Tsai CJ, Lin HY, Tseng IW, Gau SS. Brain voxel-based morphometry correlates of emotion dysregulation in attention-deficit hyperactivity disorder. Brain Imaging Behav. 2021;15(3):1388–1402. doi: https://doi.org/10.1007/s11682-020-00338-y

44. Paus T, Wong AP, Syme C, Pausova Z. Sex differences in the adolescent brain and body: Findings from the saguenay youth study. J Neurosci Res. 2017;95(1-2):362–370. doi: https://doi.org/10.1002/jnr.23825

45. Mills KL, Goddings AL, Herting MM, et al. Structural brain development between childhood and adulthood: Convergence across four longitudinal samples. Neuroimage. 2016;141:273–281. doi: https://doi.org/10.1016/j.neuroimage.2016.07.044

46. Vijayakumar N, Mills KL, Alexander-Bloch A, et al. Structural brain development: A review of methodological approaches and best practices. Dev Cogn Neurosci. 2018;33:129–148. doi: https://doi.org/10.1016/j.dcn.2017.11.008

47. Ingre M. Why small low-powered studies are worse than large high-powered studies and how to protect against “trivial” findings in research: comment on Friston (2012). Neuroimage. 2013;81: 496–498. doi: https://doi.org/10.1016/j.neuroimage.2013.03.030


Review

For citations:


Firumyants A.I., Namazova-Baranova L.S., Karkashadze G.A., Kovtun O.P., Dyachenko V.V., Shilko N.S., Rudenko E.N., Meshkov A.V., Sergienko N.S., Nesterova Yu.V., Yatsick L.M., Rykunova A.I. Brain Morphometry is an Advanced Method of Neuroimaging Mapping in Children. Current Pediatrics. 2023;22(6):521-527. (In Russ.) https://doi.org/10.15690/vsp.v22i6.2707

Views: 534


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)