Preview

Вопросы современной педиатрии

Расширенный поиск

Связь между кишечной микробиотой младенцев и их нервно-психическим развитием: систематическое обзорное исследование литературы по методологии scoping review

https://doi.org/10.15690/vsp.v23i1.2706

Аннотация

Обоснование. Долгосрочные эффекты микрофлоры толстой кишки или ее нарушений на здоровье человека остаются во многом неизученными. В частности, по-прежнему актуален вопрос связи кишечной микробиоты новорожденных и детей первых месяцев жизни с их нервно-психическим развитием в будущем. Цель исследования — провести систематическое обобщение результатов исследований связи микробиоты толстой кишки (ее видового состава в норме и при нарушениях) у новорожденных и детей первых месяцев жизни и их нервно-психического развития до достижения возраста 1 года. Методы. Поиск публикаций выполнен в базах данных Medline, Web of Science (WoS), Научная электронная библиотека (eLIBRARY.RU) и КиберЛенинка. Период публикации работ — с января 2001 по май 2022 г. (по декабрь 2021 г. в WoS). В обзор включали исследования, в которых изучали связь микробиоты толстой кишки новорожденных и детей первых месяцев жизни с их нервно-психическим развитием в возрасте до 1 года, наличием патологии нервной системы, нарушениями поведения и/или эмоциональной сферы. Язык публикации: русский, английский. Результаты. В обзор включены сведения из 9 исследований. Обобщены данные о связи микробиоты кишечника (ее состава и/или количества микроорганизмов) с нервно-психическим развитием в раннем возрасте. Заключение. Микробиота толстой кишки младенцев расценивается как новый неинвазивный биомаркер их нервнопсихического развития. Различия в дизайне опубликованных оригинальных исследований, включенных в систематическое обзорное исследование литературы, не позволяют оценить значение отдельных компонентов микробиоты для нервно-психического развития ребенка.

Об авторах

О. Г. Малыгина
Северный государственный медицинский университет
Россия

Архангельск


Раскрытие интересов:

Нет



А. А. Усынина
Северный государственный медицинский университет
Россия

Усынина Анна Александровна, доктор медицинских наук, доцент, заведующая кафедрой неонатологии и перинатологии 

163000, Архангельск, пр. Троицкий, 51

тел.: +7 (8182) 20-75-80


Раскрытие интересов:

Нет



А. А. Макарова
Северный государственный медицинский университет
Россия

Архангельск


Раскрытие интересов:

Нет



Список литературы

1. Jiménez E, Marín ML, Martín R, et al. Is meconium from healthy newborns actually sterile? Res Microbiol. 2008;159(3):187–193. doi: https://doi.org/10.1016/j.resmic.2007.12.007

2. Morais J, Marques C, Teixeira D, et al. Extremely preterm neonates have more Lactobacillus in meconium than very preterm neonates — the in uteromicrobial colonization hypothesis. Gut Microbes. 2020;12(1):1785804. doi: https://doi.org/10.1080/19490976.2020.1785804

3. Ferretti P, Pasolli E, Tett A, et al. Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome. Cell Host Microbe. 2018;24(1):133–145.e5. doi: https://doi.org/10.1016/j.chom.2018.06.005

4. Grech A, Collins CE, Holmes A, et al. Maternal exposures and the infant gut microbiome: a systematic review with meta-analysis. Gut Microbes. 2021;13(1):1–30. doi: https://doi.org/10.1080/19490976.2021.1897210

5. D’Agata AL, Wu J, Welandawe MKV, et al. Effects of early life NICU stress on the developing gut microbiome. Dev Psychobiol. 2019;61(5):650–660. doi: https://doi.org/10.1002/dev.21826

6. Collado MC, Isolauri E, Laitinen K, Salminen S. Effect of mother’s weight on infant’s microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am J Clin Nutr. 2010;92(5):1023–1030. doi: https://doi.org/10.3945/ajcn.2010.29877

7. Lundgren SN, Madan JC, Emond JA, et al. Maternal diet during pregnancy is related with the infant stool microbiome in a delivery mode-dependent manner. Microbiome. 2018;6(1):109. doi: https://doi.org/10.1186/s40168-018-0490-8

8. Fan HY, Tung YT, Yang YSH, et al. Maternal Vegetable and Fruit Consumption during Pregnancy and Its Effects on Infant Gut Microbiome. Nutrients. 2021;13(5):1559. doi: https://doi.org/10.3390/nu13051559

9. Chu DM, Antony KM, Ma J, et al. The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med. 2016;8(1):77. doi: https://doi.org/10.1186/s13073-016-0330-z

10. Korpela K, Blakstad EW, Moltu SJ, et al. Intestinal microbiota development and gestational age in preterm neonates. Sci Rep. 2018;8(1):1–9. doi: https://doi.org/10.1038/s41598-018-20827-x

11. Hill CJ, Lynch DB, Murphy K, et al. Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Micro biome. 2017;5(1):4. doi: https://doi.org/10.1186/s40168-016-0213-y

12. Penders J, Thijs C, Vink C, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006; 118(2):511–521. doi: https://doi.org/10.1542/peds.2005-2824

13. Azad MB, Konya T, Maughan H, et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ. 2013;185(5):385–394. doi: https://doi.org/10.1503/cmaj.121189

14. Wang M, Li M, Wu S, et al. Fecal microbiota composition of breast-fed infants is correlated with human milk oligosaccharides consumed. J Pediatr Gastroenterol Nutr. 2015;60(6):825–833. doi: https://doi.org/10.1097/MPG.0000000000000752

15. Tanaka S, Kobayashi T, Songjinda P, et al. Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol Med Microbiol. 2009;56(1):80–87. doi: https://doi.org/10.1111/j.1574-695X.2009.00553.x

16. Reyman M, van Houten MA, Watson RL, et al. Effects of early-life antibiotics on the developing infant gut microbiome and resistome: a randomized trial. Nat Commun. 2022;13(1):893. doi: https://doi.org/10.1038/s41467-022-28525-z

17. Borre YE, O’Keeffe GW, Clarke G, et al. Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med. 2014;20(9):509–518. doi: https://doi.org/10.1016/j.molmed.2014.05.002

18. Warner BB. The contribution of the gut microbiome to neurodevelopment and neuropsychiatric disorders. Pediatr Res. 2019; 85(2):216–224. doi: https://doi.org/10.1038/s41390-018-0191-9

19. Cryan JF, O’Riordan KJ, Cowan CSM, et al. The Microbiota-GutBrain Axis. Physiol Rev. 2019;99(4):1877–2013. doi: https://doi.org/10.1152/physrev.00018.2018

20. Laue HE, Coker MO, Madan JC. The Developing Microbiome From Birth to 3 Years: The Gut-Brain Axis and Neurodevelopmental Outcomes. Front Pediatr. 2022;10:815885. doi: https://doi.org/10.3389/fped.2022.815885

21. Han W, Tellez LA, Perkins MH, et al. A Neural Circuit for Gut-Induced Reward. Cell. 2018;175(3):665–678.e23. doi: https://doi.org/10.1016/j.cell.2018.08.049

22. Clarke G, Grenham S, Scully P, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry. 2013;18(6):666–673. doi: https://doi.org/10.1038/mp.2012.77

23. Lu J, Lu L, Yu Y, et al. Effects of Intestinal Microbiota on Brain Development in Humanized Gnotobiotic Mice. Sci Rep. 2018;8(1): 5443. doi: https://doi.org/10.1038/s41598-018-23692-w

24. Sudo N, Chida Y, Aiba Y, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558(Pt 1):263–275. doi: https://doi.org/10.1113/jphysiol.2004.063388

25. Zhou Q, Niño DF, Yamaguchi Y, et al. Necrotizing enterocolitis induces T lymphocyte-mediated injury in the developing mammalian brain. Sci Transl Med. 2021;13(575):eaay6621. doi: https://doi.org/10.1126/scitranslmed.aay6621

26. Caspani G, Green M, Swann JR, Foster JA. Microbe-Immune Crosstalk: Evidence That T Cells Influence the Development of the Brain Metabolome. Int J Mol Sci. 2022;23(6):3259. doi: https://doi.org/10.3390/ijms23063259

27. Rea V, Bell I, Ball T, Van Raay T. Gut-derived metabolites influence neurodevelopmental gene expression and Wnt signaling events in a germ-free zebrafish model. Microbiome. 2022;10(1):132. doi: https://doi.org/10.1186/s40168-022-01302-2

28. Thion MS, Low D, Silvin A, et al. Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner. Cell. 2018;172(3): 500–516.e16. doi: https://doi.org/10.1016/j.cell.2017.11.042

29. Møllgård K, Saunders NR. The development of the human blood-brain and blood-CSF barriers. Neuropathol Appl Neurobiol. 1986;12(4): 337–358. doi: https://doi.org/10.1111/j.1365-2990.1986.tb00146.x

30. Ogbonnaya ES, Clarke G, Shanahan F, et al. Adult Hippocam pal Neurogenesis Is Regulated by the Microbiome. Biol Psychiatry. 2015; 78(4):e7–e9. doi: https://doi.org/10.1016/j.biopsych.2014.12.023

31. Keogh CE, Kim DHJ, Pusceddu MM, et al. Myelin as a regulator of development of the microbiota-gut-brain axis. Brain Behav Immun. 2021;91:437–450. doi: https://doi.org/10.1016/j.bbi.2020.11.001

32. Diaz Heijtz R, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA. 2011; 108(7):3047–3052. doi: https://doi.org/10.1073/pnas.1010529108

33. Mancini VO, Brook J, Hernandez C, et al. Associations between the human immune system and gut microbiome with neurodevelopment in the first 5 years of life: A systematic scoping review. Dev Psychobiol. 2023;65(2):e22360. doi: https://doi.org/10.1002/dev.22360

34. Малыгина О.Г., Макарова А.А., Усынина А.А. Методология систематического обзора на примере выявления связи микробиоты кишечника и неврологического развития ребенка // Современные проблемы науки и образования. — 2022. — № 2. — С. 95.

35. Tricco AC, Lillie E, Zarin W, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467–473. doi: https://doi.org/10.7326/M18-0850

36. Aatsinki A-K, Lahti L, Uusitupa H-M, et al. Gut microbiota composition is associated with temperament traits in infants. Brain Behav Immun. 2019;80:849–858. doi: https://doi.org/10.1016/j.bbi.2019.05.035

37. Sun Zh, Xu W, Cong X, et al. Log-contrast regression with functional compositional predictors: linking preterm infant’s gut microbiome trajectories to neurobehavioral outcome. Ann Appl Stat. 2020;14(3):1535–1556. doi: https://doi.org/10.1214/20-aoas1357

38. Kelsey CM, Prescott S, McCulloch JA, et al. Gut microbiota composition is associated with newborn functional brain connectivity and behavioral temperament. Brain Behav Immun. 2021;91: 472–486. doi: https://doi.org/10.1016/j.bbi.2020.11.003

39. Oliphant K, Ali M, D’Souzab M, et al. Bacteroidota and Lachnospiraceae integration into the gut microbiome at key time points in early life are linked to infant neurodevelopment. Gut Microbes. 2021;13(1): e1997560. doi: https://doi.org/10.1080/19490976.2021.1997560

40. Seki D, Mayer M, Hausmann B, et al. Aberrant gut-microbiotaimmune-brain axis development in premature neonates with brain damage. Cell Host Microbe. 2021;29(10):1558–1572. doi: https://doi.org/10.1016/j.chom.2021.08.004

41. Carlson AL, Xia K, Azcarate-Peril MA, et al. Infant gut microbiome composition is associated with non-social fear behavior in a pilot study. Nat Commun. 2021;12(1):3294. doi: https://doi.org/10.1038/s41467-021-23281-y

42. Zhang X, Liu L, Bai W, et al. Evolution of Intestinal Microbiota of Asphyxiated Neonates Within 1 Week and Its Relationship With Neural Development at 6 Months. Front Pediatr. 2021;9:690339. doi: https://doi.org/10.3389/fped.2021.690339

43. Russell JT, Ruoss JL, de la Cruz D, et al. Antibiotics and the developing intestinal microbiome, metabolome and inflammatory environment in a randomized trial of preterm infants. Sci Rep. 2021;11:1943. doi: https://doi.org/10.1038/s41598-021-80982-6

44. Wu W, Zhao A, Liu B, et al. Neurodevelopmental Outcomes and Gut Bifidobacteria in Term Infants Fed an Infant Formula Containing High sn-2 Palmitate: A Cluster Randomized Clinical Trial. Nutrients. 2021;13(2):693. doi: https://doi.org/10.3390/nu13020693

45. Dahl C, Stigum H, Valeur J, et al. Preterm infants have distinct microbiomes not explained by mode of delivery, breastfeeding duration or antibiotic exposure. Int J Epidemiol. 2018;47(5):1658–1669. doi: https://doi.org/10.1093/ije/dyy064


Рецензия

Для цитирования:


Малыгина О.Г., Усынина А.А., Макарова А.А. Связь между кишечной микробиотой младенцев и их нервно-психическим развитием: систематическое обзорное исследование литературы по методологии scoping review. Вопросы современной педиатрии. 2024;23(1):13-20. https://doi.org/10.15690/vsp.v23i1.2706

For citation:


Malygina O.G., Usynina A.A., Makarova A.A. Association between Intestinal Microbiota in Infants and their Neurodevelopment: Systematic Literature Review on Scoping Review Methodology. Current Pediatrics. 2024;23(1):13-20. (In Russ.) https://doi.org/10.15690/vsp.v23i1.2706

Просмотров: 526


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)