Preview

Current Pediatrics

Advanced search

Progeroid Cockayne Syndrome

https://doi.org/10.15690/vsp.v23i3.2767

Abstract

Cockayne syndrome is a rare genetic disease from the group of premature aging syndromes associated with impaired DNA repair. The syndrome is autosomal recessive, and it is caused by pathogenic variants in ERCC8, ERCC6, XPB (ERCC3), XPD (ERCC2), and XPG (ERCC5) genes. Its prevalence is 1 case per 2.5 million people. The clinical signs include nervous, cardiovascular and musculoskeletal systems impairments, severe growth retardation, and body weight deficiency. The average life expectancy of these patients varies from 5 to 30 years and depends on the disease type and severity. There is no pathogenetic treatment. This article presents the results of the latest research on the disease diagnosis and management.

About the Authors

Anastasiya L. Kungurtseva
Sechenov First Moscow State Medical University
Russian Federation

Moscow


Disclosure of interest:

Not declared



Alisa V. Vitebskaya
Sechenov First Moscow State Medical University
Russian Federation

Moscow


Disclosure of interest:

Not declared



References

1. Karikkineth AC, Scheibye-Knudsen M, Fivenson E, et al. Cockayne syndrome: Clinical features, model systems and pathways. Ageing Res Rev. 2017;33:3–17. doi: https://doi.org/10.1016/j.arr.2016.08.002

2. Hafsi W, Saleh HM. Cockayne Syndrome. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK525998. Accessed on June 09, 2024.

3. Chikhaoui A, Kraoua I, Calmels N, et al. Heterogeneous clinical features in Cockayne syndrome patients and siblings carrying the same CSA mutations. Orphanet J Rare Dis. 2022;17(1):121. doi: https://doi.org/10.1186/s13023-022-02257-1

4. Milosic F, Hengstschläger M, Osmanagic-Myers S. Premature aging in genetic diseases: what conclusions can be drawn for physiological aging. Front Aging. 2024;4:1327833. doi: https://doi.org/10.3389/fragi.2023.1327833

5. Cockayne EA. Dwarfism with retinal atrophy and deafness. Arch Dis Child. 1936;11(61):1–8. doi: https://doi.org/10.1136/adc.11.61.1

6. Cockayne EA. Dwarfism with Retinal Atrophy and Deafness. Arch Dis Child. 1946;21(105):52–54.

7. Neill CA, Dingwall MM. A syndrome resembling progeria: A review of two cases. Arch Dis Child. 1950;25(123):213–223. doi: https://doi.org/10.1136/adc.25.123.213

8. Czeizel AE, Marchalkó M. Cockayne syndrome type III with high intelligence. Clin Genet. 1995;48(6):331–333. doi: https://doi.org/10.1111/j.1399-0004.1995.tb04121.x

9. Calmels N, Botta E, Jia N, et al. Functional and clinical relevance of novel mutations in a large cohort of patients with Cockayne syndrome. J Med Genet. 2018;55(5):329–343. doi: https://doi.org/10.1136/jmedgenet-2017-104877

10. Kashiyama K, Nakazawa Y, Pilz DT, et al. Malfunction of nuclease ERCC1-XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia. Am J Hum Genet. 2013;92(5):807–819. doi: https://doi.org/10.1016/j.ajhg.2013.04.007

11. Sirchia F, Fantasia I, Feresin A, et al. Prenatal findings of cataract and arthrogryposis: recurrence of cerebro-oculo-facio-skeletal syndrome and review of differential diagnosis. BMC Med Genomics. 2021;14(1):89. doi: https://doi.org/10.1186/s12920-021-00939-6

12. Le Van Quyen P, Calmels N, Bonnière M, et al. Prenatal diagnosis of cerebro-oculo-facio-skeletal syndrome: Report of three fetuses and review of the literature. Am J Med Genet A. 2020;182(5): 1236–1242. doi: https://doi.org/10.1002/ajmg.a.61520

13. Gutsol LO, Minakina LN, Nepomniashikh SF. Key Nucleotide Excision Repair Proteins in Humans. Baikal Medical Journal. 2015;137(6):33–36. (In Russ).

14. Petruseva IO, Evdokimov AN, Lavrik OI. Molekulyarnye mekhanizmy deistviya sistemy obshchegenomnoi ekstsizionnoi reparatsii nukleotidov. Acta Naturae. 2014;6(1):24–36. (In Russ).

15. Hoag A, Duan M, Mao P. The role of Transcription Factor IIH complex in nucleotide excision repair. Environ Mol Mutagen. 2024;65(Suppl 1):72–81. doi: https://doi.org/10.1002/em.22568

16. Theil AF, Häckes D, Lans H. TFIIH central activity in nucleotide excision repair to prevent disease. DNA Repair (Amst). 2023;132:103568. doi: https://doi.org/10.1016/j.dnarep.2023.103568

17. Venema J, Mullenders LH, Natarajan AT, et al. The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc Natl Acad Sci U S A. 1990;87(12):4707–4711. doi: https://doi.org/10.1073/pnas.87.12.4707

18. Caputo M, Frontini M, Velez-Cruz R, at al. The CSB repair factor is overexpressed in cancer cells, increases apoptotic resistance, and promotes tumor growth. DNA Repair (Amst). 2013;12(4):293–299. doi: https://doi.org/10.1016/j.dnarep.2013.01.008

19. Scheibye-Knudsen M, Scheibye-Alsing K, Canugovi C, et al. A novel diagnostic tool reveals mitochondrial pathology in human diseases and aging. Aging (Albany NY). 2013;5(3):192–208. doi: https://doi.org/10.18632/aging.100546

20. Boetefuer EL, Lake RJ, Dreval K, Fan HY. Poly(ADP-ribose) polymerase 1 (PARP1) promotes oxidative stress-induced association of Cockayne syndrome group B protein with chromatin. J Biol Chem. 2018;293(46):17863–17874. doi: https://doi.org/10.1074/jbc.RA118.004548

21. Crochemore C, Chica C, Garagnani P, et al. Epigenomic signature of accelerated ageing in progeroid Cockayne syndrome. Aging Cell. 2023;22(10):e13959. doi: https://doi.org/10.1111/acel.13959

22. Giardini MA, Segatto M, da Silva MS, et al. Telomere and telomerase biology. Prog Mol Biol Transl Sci. 2014;125:1–40. doi: https://doi.org/10.1016/B978-0-12-397898-1.00001-3

23. Revy P, Kannengiesser C, Bertuch AA. Genetics of human telomere biology disorders. Nat Rev Genet. 2023;24(2):86–108. doi: https://doi.org/10.1038/s41576-022-00527-z

24. Moriwaki S. Cockayne Syndrome. Brain Nerve. 2019;71(4): 390–393. doi: https://doi.org/10.11477/mf.1416201282

25. Laugel V. Cockayne syndrome: the expanding clinical and mutational spectrum. Mech Ageing Dev. 2013;134(5-6):161–170. doi: https://doi.org/10.1016/j.mad.2013.02.006

26. Wilson BT, Stark Z, Sutton RE, et al. The Cockayne Syndrome Natural History (CoSyNH) study: clinical findings in 102 individuals and recommendations for care. Genet Med. 2016;18(5):483–493. doi: https://doi.org/10.1038/gim.2015.110

27. Baer S, Tuzin N, Kang PB, et al. Growth charts in Cockayne syndrome type 1 and type 2. Eur J Med Genet. 2021;64(1):104105. doi: https://doi.org/10.1016/j.ejmg.2020.104105

28. Natale V. A comprehensive description of the severity groups in Cockayne syndrome. Am J Med Genet A. 2011;155A(5): 1081–1095. doi: https://doi.org/10.1002/ajmg.a.33933

29. Spitz MA, Severac F, Obringer C, et al. Diagnostic and severity scores for Cockayne syndrome. Orphanet J Rare Dis. 2021;16(1):63. doi: https://doi.org/10.1186/s13023-021-01686-8

30. Dev N, Aggarwal P. Xeroderma pigmentosum-Cockayne syndrome complex. Indian J Med Res. 2020;152(Suppl 1): S74–S75. doi: https://doi.org/10.4103/ijmr.IJMR_2097_19

31. Piccione M, Belloni Fortina A, Ferri G, et al. Xeroderma Pigmentosum: General Aspects and Management. J Pers Med. 2021;11(11):1146. doi: https://doi.org/10.3390/jpm11111146

32. Natale V, Raquer H. Xeroderma pigmentosum-Cockayne syndrome complex. Orphanet J Rare Dis. 2017;12(1):65. doi: https://doi.org/10.1186/s13023-017-0616-2

33. Sartorelli J, Travaglini L, Macchiaiolo M, et al. Spectrum of ERCC6-Related Cockayne Syndrome (Type B): From Mild to Severe Forms. Genes (Basel). 2024;15(4):508. doi: https://doi.org/10.3390/genes15040508

34. Iwasaki S, Kaga K. Chronological changes of auditory brainstem responses in Cockayne’s syndrome. Int J Pediatr Otorhinolaryngol. 1994;30(3):211–221. doi: https://doi.org/10.1016/0165-5876(94)90062-0

35. Brodsky MC, Renaud DL. Pseudopapilledema in Cockayne syndrome. Am J Ophthalmol Case Rep. 2021;22:101035. doi: https://doi.org/10.1016/j.ajoc.2021.101035

36. McElvanney AM, Wooldridge WJ, Khan AA, et al. Ophthalmic management of Cockayne’s syndrome. Eye (Lond). 1996;10 (Pt 1):61–64. doi: https://doi.org/10.1038/eye.1996.9

37. Nance MA, Berry SA. Cockayne syndrome: review of 140 cases. Am J Med Genet. 1992;42(1):68–84. doi: https://doi.org/10.1002/ajmg.1320420115

38. Rajamani G, Stafki SA, Daugherty AL, et al. Cognitive Decline and Other Late-Stage Neurologic Complications in Cockayne Syndrome. Neurol Clin Pract. 2024;14(4):e200309. doi: https://doi.org/10.1212/CPJ.0000000000200309

39. Koob M, Laugel V, Durand M, et al. Neuroimaging in Cockayne syndrome. AJNR Am J Neuroradiol. 2010;31(9):1623–1630. doi: https://doi.org/10.3174/ajnr.A2135

40. Scaioli V, D’Arrigo S, Pantaleoni C. Unusual neurophysiological features in Cockayne’s syndrome: a report of two cases as a contribution to diagnosis and classification. Brain Dev. 2004;26(4):273–280. doi: https://doi.org/10.1016/S0387-7604(03)00130-X

41. Hayashi M, Miwa-Saito N, Tanuma N, et al. Brain vascular changes in Cockayne syndrome. Neuropathology. 2012;32(2):113–117. doi: https://doi.org/10.1111/j.1440-1789.2011.01241.x

42. Tamura A, Yamaguchi K, Yanagida R, et al. Physical, oral, and swallowing functions of three patients with type a xeroderma pigmentosum: a report of three cases. BMC Oral Health. 2024;24(1):163. doi: https://doi.org/10.1186/s12903-024-03933-3

43. Wilson BT, Strong A, O’Kelly S, et al. Metronidazole Toxicity in Cockayne Syndrome: A Case Series. Pediatrics. 2015;136(3): e706–e708. doi: https://doi.org/10.1542/peds.2015-0531

44. Stern-Delfils A, Spitz MA, Durand M, et al. Renal disease in Cockayne syndrome. Eur J Med Genet. 2020;63(1):103612. doi: https://doi.org/10.1016/j.ejmg.2019.01.002

45. Kubota M, Ohta S, Ando A, et al. Nationwide survey of Cockayne syndrome in Japan: Incidence, clinical course and prognosis. Pediatr Int. 2015;57(3):339–347. doi: https://doi.org/10.1111/ped.12635

46. Ben Chehida A, Ghali N, Ben Abdelaziz R, et al. Renal Involvement in 2 Siblings With Cockayne Syndrome. Iran J Kidney Dis. 2017;11(3):253–255.

47. Muzammal M, Ali MZ, Ahmad S, et al. The molecular genetics of UV-Sensitive syndrome: A rare dermal anomaly. J Pak Med Assoc. 2021;71(10):2391–2396. doi: https://doi.org/10.47391/JPMA.03-476

48. Yew YW, Giordano CN, Spivak G, Lim HW. Understanding photodermatoses associated with defective DNA repair: Photosensitive syndromes without associated cancer predisposition. J Am Acad Dermatol. 2016;75(5):873–882. doi: https://doi.org/10.1016/j.jaad.2016.03.044

49. Spivak G. UV-sensitive syndrome. Mutat Res. 2005;577(1-2): 162–169. doi: https://doi.org/10.1016/j.mrfmmm.2005.03.017

50. Kordon MM, Arron S, Cleaver JE, et al. The UVSSA protein is part of a genome integrity homeostasis network with links to transcription-coupled DNA repair and ATM signaling. Proc Natl Acad Sci U S A. 2022;119(11):e2116254119. doi: https://doi.org/10.1073/pnas.2116254119

51. Brambullo T, Colonna MR, Vindigni V, et al. Xeroderma Pigmentosum: A Genetic Condition Skin Cancer Correlated-A Systematic Review. Biomed Res Int. 2022;2022:8549532. doi: https://doi.org/10.1155/2022/8549532

52. Black JO. Xeroderma Pigmentosum. Head Neck Pathol. 2016; 10(2):139–144. doi: https://doi.org/10.1007/s12105-016-0707-8

53. Stefanini M, Kraemer KHK. Xeroderma pigmentosum. In: Neurocutaneous Diseases. Ruggieri M, Pascual-Castroviejo I, Di Rocco C, eds. Wien; New York: Springer; 2008. pp. 771–792.

54. Bradford PT, Goldstein AM, Tamura D, et al.Cancer and neurologic degeneration in xeroderma pigmentosum: long term follow-up characterises the role of DNA repair. J Med Genet. 2011;48(3): 168–176. doi: https://doi.org/10.1136/jmg.2010.083022

55. Ramkumar HL, Brooks BP, Cao X, et al. Ophthalmic manifestations and histopathology of xeroderma pigmentosum: two clinicopathological cases and a review of the literature. Surv Ophthalmol. 2011;56(4):348–361. doi: https://doi.org/10.1016/j.survophthal.2011.03.001

56. Garcia-Moreno H, Langbehn DR, Abiona A, et al. Neurological disease in xeroderma pigmentosum: prospective cohort study of its features and progression. Brain. 2023;146(12):5044–5059. doi: https://doi.org/10.1093/brain/awad266

57. Oleksy B, Mierzewska H, Tryfon J, et al. Aicardi-Goutières Syndrome due to a SAMHD1 Mutation Presenting with Deep White Matter Cysts. Mol Syndromol. 2022;13(2):132–138. doi: https://doi.org/10.1159/000518941

58. Senju C, Nakazawa Y, Shimada M, et al. Aicardi-Goutières syndrome with SAMHD1 deficiency can be diagnosed by unscheduled DNA synthesis test. Front Pediatr. 2022;10:1048002. doi: https://doi.org/10.3389/fped.2022.1048002

59. Ouattara ABI, Barro M, Nacro SF, et al. The Seckel syndrome: A case observed in the pediatric department of the University Hospital Center Sourou Sanou (Burkina Faso). Pediatr Rep. 2020;12(1):8231. doi: https://doi.org/10.4081/pr.2020.8231

60. Saeidi M, Shahbandari M. A Child with Seckel Syndrome and Arterial Stenosis: Case Report and Literature Review. Int Med Case Rep J. 2020;13:159–163. doi: https://doi.org/10.2147/IMCRJ.S241601

61. Wang S, Min Z, Ji Q, et al. Rescue of premature aging defects in Cockayne syndrome stem cells by CRISPR/Cas9-mediated gene correction. Protein Cell. 2020;11(1):1–22. doi: https://doi.org/10.1007/s13238-019-0623-2 https://doi.org/10.15690/vsp.v23i3.2752


Review

For citations:


Kungurtseva A.L., Vitebskaya A.V. Progeroid Cockayne Syndrome. Current Pediatrics. 2024;23(3):124-130. (In Russ.) https://doi.org/10.15690/vsp.v23i3.2767

Views: 570


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)