Preview

Current Pediatrics

Advanced search

The Role of Systemic Inflammation in Psychiatric Disorders Development in Children: Literature Review

https://doi.org/10.15690/vsp.v23i4.2780

Abstract

There has been significant increase in mental disorders prevalence in pediatric population around the world. Increasing incidence of autism, intellectual incapacity, hyperkinetic disorders, and schizophrenia gives causes for specific concern. Clarifying mental disorders’ etiology and pathogenesis is the priority of researchers. The role of systemic inflammation in psychiatric disorders development currently remains the least studied. However, it can already be stated that generalized peripheral inflammation is the important factor associated with the development of mental disorders both in adults and children. This review presents latest data, as well as an authors’ assessment of systemic inflammation role in the most common mental disorders development in children. Comparative analysis of acute and chronic systemic inflammation manifestations has been performed. The major pathogenetic mechanisms of “systemic damage” in mental disorders have been identified.

About the Authors

Daria A. Emelina
National Medical Research Center for Psychiatry and Neurology named after V.M. Bekhterev
Russian Federation

Saint Petersburg 


Disclosure of interest:

Not declared. 



Ilya V. Kravchenko
National Medical Research Center for Psychiatry and Neurology named after V.M. Bekhterev
Russian Federation

Saint Petersburg 


Disclosure of interest:

Not declared. 



Igor V. Makarov
National Medical Research Center for Psychiatry and Neurology named after V.M. Bekhterev
Russian Federation

Saint Petersburg 


Disclosure of interest:

Not declared. 



Rauf F. Gasanov
National Medical Research Center for Psychiatry and Neurology named after V.M. Bekhterev
Russian Federation

Saint Petersburg 


Disclosure of interest:

Not declared. 



Ekaterina S. Prokhorenko
National Medical Research Center for Psychiatry and Neurology named after V.M. Bekhterev
Russian Federation

Saint Petersburg 


Disclosure of interest:

Not declared. 



References

1. Jiang NM, Cowan M, Moonah SN, et al. The Impact of Systemic Inflammation on Neurodevelopment. Trends Mol Med. 2018;24(9): 794–804. doi: https://doi.org/10.1016/j.molmed.2018.06.008

2. Ustinova NV, Karkashadze GA, Namazova-Baranova LS. Cognitive, Emotional, and Behavioral Disorders in Children with Respiratory Allergic Diseases: Causes and Solutions. Pediatricheskaya farmakologiya — Pediatric pharmacology. 2024;21(3):226–239. (In Russ). https://doi.org/10.15690/pf.v21i3.2757]

3. Chereshnev VA, Gusev EYu. Immunological and pathophysiologicalmechanisms of systemic inflammation. Medical Immunology. 2012;14 (1-2):9–20. (In Russ).

4. Gusev EY, Yurchenko LN, Chereshnev VA, et al. Chronic systemic inflammation as typical pathological process. Cytokines and inflammation. 2008;7(4):3–10. (In Russ).

5. Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management. BMJ. 2016;353:i1585. doi: https://doi.org/10.1136/bmj.i1585

6. Zotova N, Zhuravleva Y, Chereshnev V, Gusev E. Acute and Chronic Systemic Inflammation: Features and Differences in the Pathogenesis, and Integral Criteria for Verification and Differentiation. Int J Mol Sci. 2023;24(2):1144. doi: https://doi.org/10.3390/ijms24021144

7. Tioleco N, Silberman AE, Stratigos K, et al. Prenatal maternal infection and risk for autism in offspring: A meta-analysis. Autism Res. 2021;14(6):1296–1316. doi: https://doi.org/10.1002/aur.2499

8. Knuesel I, Chicha L, Britschgi M, et al. Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol. 2014;10(11):643–660. doi: https://doi.org/10.1038/nrneurol.2014.187

9. Estes ML, McAllister AK. Maternal immune activation: Implications for neuropsychiatric disorders. Science. 2016;353(6301):772–777. doi: https://doi.org/10.1126/science.aag3194

10. Canetta S, Sourander A, Surcel HM, et al. Elevated maternal C-reactive protein and increased risk of schizophrenia in a national birth cohort. Am J Psychiatry. 2014;171(9):960–968. doi: https://doi.org/10.1176/appi.ajp.2014.13121579

11. Choi GB, Yim YS, Wong H, et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science. 2016;351(6276):933–939. doi: https://doi.org/10.1126/science.aad0314

12. Woods RM, Lorusso JM, Fletcher J, et al. Maternal immune activation and role of placenta in the prenatal programming of neurodevelopmental disorders. Neuronal Signal. 2023;7(2):NS20220064. doi: https://doi.org/10.1042/NS20220064

13. Zhao H, Zhang H, Liu S, et al. Association of Peripheral Blood Levels of Cytokines With Autism Spectrum Disorder: A Meta-Analysis. Front Psychiatry. 2021;12:670200. doi: https://doi.org/10.3389/fpsyt.2021.670200

14. Brown AS, Sourander A, Hinkka-Yli-Salomäki S, et al. Elevated maternal C-reactive protein and autism in a national birth cohort. Mol Psychiatry. 2014;19(2):259–264. doi: https://doi.org/10.1038/mp.2012.197

15. Jones KL, Croen LA, Yoshida CK, et al. Autism with intellectual disability is associated with increased levels of maternal cytokines and chemokines during gestation. Mol Psychiatry. 2017;22(2): 273–279. doi: https://doi.org/10.1038/mp.2016.77

16. Spann MN, Monk C, Scheinost D, Peterson BS. Maternal Immune Activation During the Third Trimester Is Associated with Neonatal Functional Connectivity of the Salience Network and Fetal to Toddler Behavior. J Neurosci. 2018;38(11):2877–2886. doi: https://doi.org/10.1523/JNEUROSCI.2272-17.2018

17. Nour-Eldine W, Ltaief SM, Abdul Manaph NP, et al. In search of immune cellular sources of abnormal cytokines in the blood in autism spectrum disorder: A systematic review of case-control studies. Front Immunol. 2022;13:950275. doi: https://doi.org/10.3389/fimmu.2022.950275

18. Saghazadeh A, Ataeinia B, Keynejad K, et al. Anti-inflammatory cytokines in autism spectrum disorders: A systematic review and meta-analysis. Cytokine. 2019;123:154740. doi: https://doi.org/10.1016/j.cyto.2019.154740

19. Masi A, Quintana DS, Glozier N, et al. Cytokine aberrations in autism spectrum disorder: a systematic review and metaanalysis. Mol Psychiatry. 2015;20(4):440–446. doi: https://doi.org/10.1038/mp.2014.59

20. Khudiakova MI, Cherevko NA, Novikov PS, Berezovskaya KV. Features of the cytokine profile in children with autism spectrum disorder. Bulletin of Siberian Medicine. 2020;19(4):174–178. (In Russ). doi: https://doi.org/10.20538/1682-0363-2020-4-174-178

21. Filippova YY, Burmistrova AL. Levels of IL-6 and IFN-γ in children with schizophrenia and authism spectrum disorders with different phenotypes of social behavior. Russian Journal of Immunology. 2019;22(2-1):599–601. (In Russ). doi: https://doi.org/10.31857/S102872210007012-8

22. Ferencova N, Visnovcova Z, Ondrejka I, et al. Peripheral Inflammatory Markers in Autism Spectrum Disorder and Attention Deficit/Hyperactivity Disorder at Adolescent Age. Int J Mol Sci. 2023;24(14):11710. doi: https://doi.org/10.3390/ijms241411710

23. Chang JP, Su KP, Mondelli V, et al. Cortisol and inflammatory biomarker levels in youths with attention deficit hyperactivity disorder (ADHD): evidence from a systematic review with meta-analysis. Transl Psychiatry. 2021;11(1):430. doi: https://doi.org/10.1038/s41398-021-01550-0

24. Misiak B, Wójta-Kempa M, Samochowiec J, et al. Peripheral blood inflammatory markers in patients with attention deficit/ hyperactivity disorder (ADHD): A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2022;118:110581. doi: https://doi.org/10.1016/j.pnpbp.2022.110581

25. Khandaker GM, Pearson RM, Zammit S, et al. Association of serum interleukin 6 and C-reactive protein in childhood with depression and psychosis in young adult life: a population-based longitudinal study. JAMA Psychiatry. 2014;71(10):1121–1128. doi: https://doi.org/10.1001/jamapsychiatry.2014.1332

26. Kappelmann N, Khandaker GM, Dal H, et al. Systemic inflammation and intelligence in early adulthood and subsequent risk of schizophrenia and other non-affective psychoses: a longitudinal cohort and co-relative study. Psychol Med. 2019;49(2):295–302. doi: https://doi.org/10.1017/S0033291718000831

27. Metcalf SA, Jones PB, Nordstrom T, et al. Serum C-reactive protein in adolescence and risk of schizophrenia in adulthood: A prospective birth cohort study. Brain Behav Immun. 2017;59: 253–259. doi: https://doi.org/10.1016/j.bbi.2016.09.008

28. Lesh TA, Careaga M, Rose DR, et al. Cytokine alterations in firstepisode schizophrenia and bipolar disorder: relationships to brain structure and symptoms. J Neuroinflammation. 2018;15(1):165. doi: https://doi.org/10.1186/s12974-018-1197-2

29. Li Y, Jinxiang T, Shu Y, et al. Childhood trauma and the plasma levels of IL-6, TNF-α are risk factors for major depressive disorder and schizophrenia in adolescents: A cross-sectional and casecontrol study. J Affect Disord. 2022;305:227–232. doi: https://doi.org/10.1016/j.jad.2022.02.020

30. Tural Hesapcioglu S, Kasak M, Cıtak Kurt AN, et al. High monocyte level and low lymphocyte to monocyte ratio in autism spectrum disorders. Int J Dev Disabil. 2017;65(2):73–81. doi: https://doi.org/10.1080/20473869.2017.1371369

31. Arteaga-Henríquez G, Lugo-Marín J, Gisbert L, et al. Activation of the Monocyte/Macrophage System and Abnormal Blood Levels of Lymphocyte Subpopulations in Individuals with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Int J Mol Sci. 2022;23(22):14329. doi: https://doi.org/10.3390/ijms232214329

32. Esnafoglu E, Subaşı B. Association of low 25-OH-vitamin D levels and peripheral inflammatory markers in patients with autism spectrum disorder: Vitamin D and inflammation in Autism. Psychiatry Res. 2022;316:114735. doi: https://doi.org/10.1016/j.psychres.2022.114735

33. Ellul P, Maruani A, Peyre H, et al. Abnormal neutrophil-tolymphocyte ratio in children with autism spectrum disorder and history of maternal immune activation. Sci Rep. 2023;13(1):22424. doi: https://doi.org/10.1038/s41598-023-49789-5

34. Topal Z, Tufan AE, Karadag M, et al. Evaluation of peripheral inflammatory markers, serum B12, folate, ferritin levels and clinical correlations in children with autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). Nord J Psychiatry.2022;76(2):150–157. doi: https://doi.org/10.1080/08039488.2021.1946712

35. Gędek A, Modrzejewski S, Gędek M, et al. Neutrophil to lymphocyte ratio, platelet to lymphocyte ratio, and monocyte to lymphocyte ratio in ADHD: a systematic review and meta-analysis. Front Psychiatry. 2023;14:1258868. doi: https://doi.org/10.3389/fpsyt.2023.1258868

36. Frota IJ, de Oliveira ALB, De Lima DN Jr, et al. Decrease in cognitive performance and increase of the neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios with higher doses of antipsychotics in women with schizophrenia: a cross-sectional study. BMC Psychiatry. 2023;23(1):558. doi: https://doi.org/10.1186/s12888-023-05050-x

37. Yang C, Tian Y, Yang X, et al. Hematological and inflammatory markers in Han Chinese patients with drug-free schizophrenia: relationship with symptom severity. Front Immunol. 2024;15:1337103. doi: https://doi.org/10.3389/fimmu.2024.1337103

38. Dadouli K, Janho MB, Hatziefthimiou A, et al. Neutrophilto-Lymphocyte, Monocyte-to-Lymphocyte, Platelet-to-Lymphocyte Ratio and Systemic Immune-Inflammatory Index in Different States of Bipolar Disorder. Brain Sci. 2022;12(8):1034. doi: https://doi.org/10.3390/brainsci12081034

39. Fusar-Poli L, Natale A, Amerio A, et al. Neutrophil-to-Lymphocyte, Platelet-to-Lymphocyte and Monocyte-to-Lymphocyte Ratio in Bipolar Disorder. Brain Sci. 2021;11(1):58. doi: https://doi.org/10.3390/brainsci11010058

40. Velasco A, Lengvenyte A, Rodriguez-Revuelta J, et al. Neutrophilto-lymphocyte ratio, platelet-to-lymphocyte ratio, and monocyteto-lymphocyte ratio in depressed patients with suicidal behavior: A systematic review. Eur Psychiatry. Published online 2023:1–25. doi: https://doi.org/10.1192/j.eurpsy.2023.18

41. Pethő B, Kovács MÁ, Simon D, et al. Investigation of peripheral inflammatory biomarkers in association with suicide risk in major depressive disorder. Front Psychiatry. 2024;15:1321354. doi: https://doi.org/10.3389/fpsyt.2024.1321354

42. Berkol TD, Özönder Ünal I. Exploring the clinical characteristics and etiological factors of comorbid major depressive disorder and social anxiety disorder. Biomol Biomed. 2023;23(6):1136–1145. doi: https://doi.org/10.17305/bb.2023.9690

43. Dionisie V, Filip GA, Manea MC, et al. Neutrophil-to-Lymphocyte Ratio, a Novel Inflammatory Marker, as a Predictor of Bipolar Type in Depressed Patients: A Quest for Biological Markers. J Clin Med. 2021;10(9):1924. doi: https://doi.org/10.3390/jcm10091924

44. Cheng Y, Wang Y, Wang X, et al. Neutrophil-to-Lymphocyte Ratio, Platelet-to-Lymphocyte Ratio, and Monocyte-to-Lymphocyte Ratio in Depression: An Updated Systematic Review and Meta-Analysis. Front Psychiatry. 2022;13:893097. doi: https://doi.org/10.3389/fpsyt.2022.893097

45. Gogoleva VS, Drutskaya MS, Atretkhany KS. The Role of Microglia in the Homeostasis of the Central Nervous System and Neuroinflammation. Molecular Biology. 2019;53(5):790–798. (In Russ). doi: https://doi.org/10.1134/S0026898419050057

46. Cornell J, Salinas S, Huang HY, Zhou M. Microglia regulation of synaptic plasticity and learning and memory. Neural Regen Res. 2022;17(4):705–716. doi: https://doi.org/10.4103/1673-5374.322423

47. Paolicelli RC, Sierra A, Stevens B, et al. Microglia states and nomenclature: A field at its crossroads. Neuron. 2022;110(21):3458–3483. doi: https://doi.org/10.1016/j.neuron.2022.10.020

48. Woodburn SC, Bollinger JL, Wohleb ES. The semantics of microglia activation: neuroinflammation, homeostasis, and stress. J Neuroinflammation. 2021;18(1):258. doi: https://doi.org/10.1186/s12974-021-02309-6

49. Gorbacheva LR, Pomytkin IA, Surin AM, et al. Astrocytes and their role in the pathology of the central nervous system. Russian Pediatric Journal. 2018;21(1):46–53. (In Russ). doi: https://doi.org/10.18821/1560-9561-2018-21-1-46-53

50. Leonard EM, Nurse CA. The Carotid Body “Tripartite Synapse”: Role of Gliotransmission. Adv Exp Med Biol. 2023;1427:185–194. doi: https://doi.org/10.1007/978-3-031-32371-3_20

51. Jiao M, Li X, Chen L, et al. Neuroprotective effect of astrocyte-derived IL-33 in neonatal hypoxic-ischemic brain injury. J Neuroinflammation. 2020;17(1):251. doi: https://doi.org/10.1186/s12974-020-01932-z

52. Dyatlova AS, Novikova NS, Yushkov BG, et al. The Blood-Brain Barrier in Neuroimmune Interactions and Pathological Processes. Her Russ Acad Sci. 2022;92(5):590–599. doi: https://doi.org/10.1134/S1019331622050100

53. Erickson MA, Wilson ML, Banks WA. In vitro modeling of blood-brain barrier and interface functions in neuroimmune communication. Fluids Barriers CNS. 2020;17(1):26. doi: https://doi.org/10.1186/s12987-020-00187-3

54. Estes ML, McAllister AK. Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat Rev Neurosci. 2015;16(8):469–486. doi: https://doi.org/10.1038/nrn3978

55. Monet MC, Quan N. Complex Neuroimmune Involvement in Neurodevelopment: A Mini-Review. J Inflamm Res. 2023;16: 2979–2991. doi: https://doi.org/10.2147/JIR.S410562

56. Tsukada T, Shimada H, Sakata-Haga H, et al. Molecular mechanisms underlying the models of neurodevelopmental disorders in maternal immune activation relevant to the placenta. Congenit Anom (Kyoto). 2019;59(3):81–87. doi: https://doi.org/10.1111/cga.12323

57. Wu WL, Hsiao EY, Yan Z, et al. The placental interleukin-6 signaling controls fetal brain development and behavior. Brain Behav Immun. 2017;62:11–23. doi: https://doi.org/10.1016/j.bbi.2016.11.007

58. Zaretsky MV, Alexander JM, Byrd W, et al. Transfer of inflammatory cytokines across the placenta. Obstet Gynecol. 2004;103(3):546–550. doi: https://doi.org/10.1097/01.AOG.0000114980.40445.83

59. Abrahams VM, Schaefer TM, Fahey JV, et al. Expression and secretion of antiviral factors by trophoblast cells following stimulation by the TLR-3 agonist, Poly(I : C). Hum Reprod. 2006;21(9): 2432–2439. doi: https://doi.org/10.1093/humrep/del178

60. Bauer ME, Teixeira AL. Inflammation in psychiatric disorders: what comes first? Ann N Y Acad Sci. 2019;1437(1):57–67. doi: https://doi.org/10.1111/nyas.13712

61. Sekar A, Bialas AR, de Rivera H, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530(7589):177–183. doi: https://doi.org/10.1038/nature16549

62. Zahorec R. Ratio of neutrophil to lymphocyte counts--rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl Lek Listy. 2001;102(1):5–14.

63. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18(2):134–147. doi: https://doi.org/10.1038/nri.2017.105

64. Zhang H, Wang Y, Qu M, et al. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin Transl Med. 2023;13(1):e1170. doi: https://doi.org/10.1002/ctm2.1170

65. Salmasi JM, Poryadin GV, Panina MI, et al. Neutrophil and monocyte extracellular traps in the diagnosis of post-covid syndrome. Bulletin of RGMU. 2022;(6):84–88. (In Russ). doi: https://doi.org/10.24075/vrgmu.2022.057

66. Lee KH, Kronbichler A, Park DD, et al. Neutrophil extracellular traps (NETs) in autoimmune diseases: A comprehensive review. Autoimmun Rev. 2017;16(11):1160–1173. doi: https://doi.org/10.1016/j.autrev.2017.09.012


Review

For citations:


Emelina D.A., Kravchenko I.V., Makarov I.V., Gasanov R.F., Prokhorenko E.S. The Role of Systemic Inflammation in Psychiatric Disorders Development in Children: Literature Review. Current Pediatrics. 2024;23(4):204-212. (In Russ.) https://doi.org/10.15690/vsp.v23i4.2780

Views: 318


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)