Preview

Current Pediatrics

Advanced search

Myopic Maculopathy Stabilization in a Child with Progressive Complicated Myopia and Underlying Connective Tissue Dysplasia via Optical Therapy with HAL Spectacle Lenses Inducing Retinal Peripheral Defocus: Clinical Case

https://doi.org/10.15690/vsp.v23i4.2779

Abstract

Background. Myopia is a serious medical and social problem specifically due to the high risk of such complications as cataracts, myopic maculopathy, glaucoma, and retinal detachment. Children with connective tissue dysplasia (CTD) syndrome are most subjected to myopia. Prevention of myopia progression in children remains the only effective way to prevent myopic maculopathy. Significant progress in this field has been achieved via optical technologies developed on the basis of peripheral defocus theory. Clinical case description. Patient, 10 years old, with CTD, mild myopia of both eyes with rapid progression, myopic maculopathy, grade 1. Ophthalmic status: spheroequivalent refraction — right eye (–)1.5 diopters / left eye (–)1.75 diopters; vision acuity with monocular correction — 1.0. Fundoscopy: optic disc is pale pink, with clear borders, arteries and veins are well-proportioned, their courses and calibers are intact; choriocapillary layer attenuation in the macular and paramacular zones, “parquet fundus”; areas of pigment redistribution on peripheral retina; no atrophic foci detected; anterior-posterior axis of the right and left eyes — 26.2 and 26.3 mm, respectively. Optical coherence tomography (OCT) has revealed retinal thinning in the upper and nasal sectors in the right eye during the first assessment. The left eye has demonstrated losses of retinal thickness within the middle parafoveal zone and significant thinning in the upper segment. Optical therapy with HAL spectacle lenses (inducing volumetric myopic peripheral defocus) was assigned to control myopia to slow down the pathological axial growth of the child's eyes and to stabilize refraction. 4 months of wearing glasses with HAL lenses has led to the stabilization of dystrophic changes in retina, signs of improvement in several sectors by were observed on OCT. No negative changes were revealed in all parafoveal segments of the left eye. The child was recommended to continue wearing glasses with HAL lenses with dynamic follow-up every 3 months. Conclusion. CTD in children is associated with high risk of complications in case of myopia progression, moreover, retinal pathology can occur even with mild myopia. Optical therapy with HAL spectacle lenses is effective and safe first treatment of choice in the control of myopia in children with CTD, and opens new opportunities in prevention of progressive myopia disabling complications in children, whose treatment results were not previously sufficient.

About the Author

Svetlana E. Kondratova
Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
Russian Federation

Moscow


Disclosure of interest:

Not declared. 



References

1. Miopiya: Clinical guidelines. Association of Ophthalmologists. 2022. 85 p. (In Russ). Доступно по: http://avo-portal.ru/documents/fkr/ФКР_миопия_дети_взрослые_2022.pdf. Ссылка активна на 30.07.2024.

2. The impact of myopia and high myopia. Report of the Joint World Health Organization-Brien Holden Vision Institute Global Scientific Meeting on Myopia. University of New South Wales, Sydney, Australia. 16–18 March 2015. Available online: https://www.researchgate.net/publication/318216691_The_impact_of_myopia_and_high_myopia_Report_of_the_Joint_World_Health_Organization-Brien_Holden_Vision_Institute_Global_Scientific_Meeting_on_Myopia. Accessed on July 30, 2024.

3. Bourke CM, Loughman J, Flitcroft DI, et al. We can’t afford to turn a blind eye to myopia. QJM. 2023;116(8):635–639. doi: https://doi.org/10.1093/qjmed/hcz076. PMID: 30911761

4. Avetisov ES. Blizorukost’: Monograph. 2nd edn. Moscow: Meditsina; 2002. 284 p. (In Russ).

5. Miopicheskaya makulyarnaya degeneratsiya (Miopicheskaya makulopatiya): Clinical guidelines. Ministry of Health of the Russian Federation; 2024. 81 p. (In Russ). Доступно по: https://cr.minzdrav.gov.ru/recomend/782_1?ysclid=lz86bemq65963095707. Ссылка активна на 30.07.2024.

6. Tideman JW, Snabel MC, Tedja MS, et al. Association of Axial Length With Risk of Uncorrectable Visual Impairment for Europeans With Myopia. JAMA Ophthalmol. 2016;134(12):1355–1363. doi: https://doi.org/10.1001/jamaophthalmol.2016.4009

7. Iomdina EN, Tarutta EP. Modern trends of basic research in pathogenesis of progressive myopia. Annals of the Russian academy of medical sciences. 2014;(3-4):44–49. (In Russ). doi: https://doi.org/10.15690/vramn.v69i3-4.994

8. Ohno-Matsui K, Kawasaki R, Jonas JB, et al. META-analysis for Pathologic Myopia (META-PM) Study Group. International photographic classification and grading system for myopic maculopathy. Am J Ophthalmol. 2015;159(5):877–883.e7. doi: https://doi.org/10.1016/j.ajo.2015.01.022

9. Tarutta EP, Proskurina OV, Tarasova NA, Markosyan GA. Analysis of risk factors that cause myopia in pre-school children and primary school students. Health Risk Analysis. 2019;(3):26–33. (In Russ). doi: https://doi.org/10.21668/health.risk/2019.3.03

10. Profilaktika razvitiya i progressirovaniya blizorukosti sredi obuchayushchikhsya v obshcheobrazovatel’nykh organizatsiyakh: Methodological guidelines. Moscow; 2021. 84 p. (In Russ). Доступно по: https://vnimaniezrenie-ru.website.yandexcloud.net/manual.pdf. Ссылка активна на: 30.07.2024.

11. Dhakal R, Shah R, Huntjens B, et al. Time spent outdoors as an intervention for myopia prevention and control in children: an overview of systematic reviews. Ophthalmic Physiol Opt. 2022;42(3):545–558. doi: https://doi.org/10.1111/opo.12945

12. Displazii soedinitel’noi tkani: Clinical guidelines. Russian Scientific Medical Society of Therapists (RSMST); 2017. 181 p. (In Russ). Доступно по: https://www.rnmot.ru/public/uploads/2018/RNMOT/Клинические%20рекомендации_ДСТ%20сайт%2016.02.18г_.pdf. Ссылка активна на 31.07.2024.

13. Sidorovich OV. Causes of development and prevalence of uniformed displays of connective tissue in children of puberty age. Modern problems of science and education. 2017;(5):1–8. (In Russ).

14. Ball AA. Myopia and undifferentiated connective tissue dysplasia. Bulletin of the council of young scientists and specialists of the Chelyabinsk region. 2018;2(3):11–14. (In Russ).

15. Bullimore MA, Brennan NA. Myopia Control: Why Each Diopter Matters. Optom Vis Sci. 2019;96(6):463–465. doi: https://doi.org/10.1097/OPX.0000000000001367

16. Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036–1042. doi: https://doi.org/10.1016/j.ophtha.2016.01.006

17. Logan NS, Bullimore MA. Optical interventions for myopia control. Eye (Lond). 2024;38(3):455–463. doi: https://doi.org/10.1038/s41433-023-02723-5

18. Walline JJ, Lindsley KB, Vedula SS, et al. Interventions to slow progression of myopia in children. Cochrane Database Syst Rev. 2020;1(1):CD004916. doi: https://doi.org/10.1002/14651858.CD004916

19. Li X, Huang Y, Yin Z, et al. Myopia Control Efficacy of Spectacle Lenses with Aspherical Lenslets: Results of a 3-Year Follow-Up Study. Am J Ophthalmol. 2023;253:160–168. doi: https://doi.org/10.1016/j.ajo.2023.03.030

20. Guo H, Li X, Zhang X, et al. Comparing the effects of highly aspherical lenslets versus defocus incorporated multiple segment spectacle lenses on myopia control. Sci Rep. 2023;13(1):3048. doi: https://doi.org/10.1038/s41598-023-30157

21. Tarutta EP, Proskurina OV, Markosyan GA, et al. Strategically Oriented Concept of Optical Prevention of Myopia Occurrence and Progression. Russian Ophthalmological Journal. 2020;13(4):7–16. doi: https://doi.org/10.21516/2072-0076-2020-13-4-7-16 (In Russ).

22. Proskurina OV, Tarutta EP, Tarasova NA, et al. Annual results of the use of spectacle lenses with built-in rings of highaspheric Stellest™ microlenses for myopia control in children. Russian ophthalmological journal. 2023;18(4):191–203. (In Russ). doi: https://doi.org/10.17816/rpoj567973

23. Huang Y, Li X, Wu J, et al. Effect of spectacle lenses with aspherical lenslets on choroidal thickness in myopic children: a 2-year randomised clinical trial. Br J Ophthalmol. 2023;107(12): 1806–1811. doi: https://doi.org/10.1136/bjo-2022-321815

24. Yu Q, Zhou JB. Scleral remodeling in myopia development. Int J Ophthalmol. 2022;15(3):510–514. doi: https://doi.org/10.18240/ijo.2022.03.21

25. Avetisov SÉ, Budzinskaia MV, Zhabina OA, et al. Fluorescein angiography and optical coherence tomography findings in central fundus of myopic patients. Russian Annals of Ophthalmology. 2015;131(4):38–48. (In Russ). doi: https://doi.org/10.17116/oftalma2015131438-48

26. Zeppieri M, Marsili S, Enaholo ES, et al. Optical Coherence Tomography (OCT): A Brief Look at the Uses and Technological Evolution of Ophthalmology. Medicina (Kaunas). 2023;59(12):2114. doi: https://doi.org/10.3390/medicina59122114

27. Bullimore MA, Lee SS, Schmid KL, et al. IMI-Onset and Progression of Myopia in Young Adults. Invest Ophthalmol Vis Sci. 2023;64(6):2. doi: https://doi.org/https://doi.org/10.1167/iovs.64.6.2

28. Fang Y, Du R, Nagaoka N, et al. OCT-Based Diagnostic Criteria for Different Stages of Myopic Maculopathy. Ophthalmology. 2019;126(7):1018–1032. doi: https://doi.org/10.1016/j.ophtha.2019.01.012

29. Страхов В.В., Махова М.В., Климова О.Н. Новые возможности мониторинга пациентов с миопией // Российский офтальмологический журнал. — 2018. — Т. 11. — № 2. — С. 30–35. — doi: https://doi.org/10.21516/2072-0076-2018-11-3-30-35 [Strakhov VV, Makhova MV, Klimova ON. New possibilities for monitoring patients with myopia. Russian Ophthalmological Journal. 2018;11(2):30–35. (In Russ). doi: https://doi.org/10.21516/2072-0076-2018-11-3-30-35

30. Chiang ST, Chen TL, Phillips JR. Effect of Optical Defocus on Choroidal Thickness in Healthy Adults with Presbyopia. Invest Ophthalmol Vis Sci. 2018;59(12):5188–5193. doi: https://doi.org/10.1167/iovs.18-24815

31. Baksh J, Lee D, Mori K, et al. Myopia Is an Ischemic Eye Condition: A Review from the Perspective of Choroidal Blood Flow. J Clin Med. 2024;13(10):2777. doi: https://doi.org/10.3390/jcm13102777

32. Muhiddin HS, Mayasari AR, Umar BT, et al. Choroidal Thickness in Correlation with Axial Length and Myopia Degree. Vision. 2022;6(1):16. doi: https://doi.org/10.3390/vision6010016

33. Summers JA, Cano EM, Kaser-Eichberger A, Schroedl F. Retinoic acid synthesis by a population of choroidal stromal cells. Exp Eye Res. 2020;201:108252. doi: https://doi.org/10.1016/j.exer.2020.108252

34. Tarutta EP, Milash SV, Markosyan GA, Tarasova NA. Choroid and optical defocus. Russian Annals of Ophthalmology. 2020;136(4):124–129. (In Russ). doi: https://doi.org/10.17116/oftalma2020136041124

35. Liu Y, Wang L, Xu Y, et al. The influence of the choroid on the onset and development of myopia: from perspectives of choroidal thickness and blood flow. Acta Ophthalmol. 2021;99(7):730–738. doi: https://doi.org/10.1111/aos.14773


Review

For citations:


Kondratova S.E. Myopic Maculopathy Stabilization in a Child with Progressive Complicated Myopia and Underlying Connective Tissue Dysplasia via Optical Therapy with HAL Spectacle Lenses Inducing Retinal Peripheral Defocus: Clinical Case. Current Pediatrics. 2024;23(4):252-257. (In Russ.) https://doi.org/10.15690/vsp.v23i4.2779

Views: 190


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)