Outcomes of Antibiotic Therapy During Perinatal Period for the Early Age Child’s Intestinal Microbiota
https://doi.org/10.15690/vsp.v23i6.2822
Abstract
This literature review provides data on antibiotic therapy (AT) consequences that child may be exposed during the perinatal period considering the development of the most crucial body system — intestinal microbiota. The main characteristics of the intestinal microbiota disturbance in infants due to various AT exposure time and volume are presented. Moreover, antibiotics' effects on the intestinal microbiota development in full-term and premature babies are covered. Modern data on the development of pathobionts and symbionts resistome within intestinal microbiota in «mother-child» complex and variants of vertical (from mother to child) and horizontal (between microorganisms) transmission of antibiotic resistance genes are presented. The major strategies for minimizing the negative consequences of perinatal AT are described
Keywords
About the Authors
Irina A. BelyaevaRussian Federation
Moscow
Disclosure of interest:
Irina A. Belyayeva — lecturing for pharmaceutical
companies Progress, Akrikhin, Bayer, AstraZeneca, Abbott
Laboratories.
Leyla S. Namazova-Baranova
Russian Federation
Moscow
Disclosure of interest:
Leyla S.Namazova-Baranova — receiving research
grants from pharmaceutical companies Pierre Fabre,
Genzyme Europe B. V., Astra Zeneca PLC, Gilead / PRA
“Pharmaceutical Research Associates CIS”, Teva Branded
Pharmaceutical products R&D, Inc / “PPD Development
(Smolensk)” LLC, “Stallerzhen S.A.” / “Quintiles GMBH”
(Austria).
Elena P. Bombardirova
Russian Federation
Moscow
Disclosure of interest:
Author confirmed the absence of a reportable
conflict of interests.
Tatyana V. Turti
Russian Federation
Moscow
Disclosure of interest:
Tatyana V. Turti — lecturing for pharmaceutical companies Progress, Akrikhin.
Regina A. Shukenbayeva
Russian Federation
Moscow
Disclosure of interest:
Author confirmed the absence of a reportable
conflict of interests.
References
1. Fleming A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. 1929. Bull World Health Organ. 2001;79(8):780–790.
2. Chain E, Florey HW, Gardner AD, et al. THE CLASSIC: penicillin as a chemotherapeutic agent. Clin Orthop Relat Res. 2005;439:23–26. doi: https://doi.org/10.1097/01.blo.0000183429.83168.07
3. Sidorenko OD. Academician Zinaida Vissarionovna Yermolieva and antibiotics (on the 120th anniversary of the scientist). Izvestiya of Timiryazev Agricultural Academy. 2019;(5):168–173. (In Russ). doi: https://doi.org/10.34677/0021-3420-2019-5-168-170
4. Nelson ML, Dinardo A, Hochberg J, Armelagos GJ. Brief communication: Mass spectroscopic characterization of tetracycline in the skeletal remains of an ancient population from Sudanese Nubia 350-550 CE. Am J Phys Anthropol. 2010;143(1):151–154. doi: https://doi.org/10.1002/ajpa.21340
5. Aminov RI. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol. 2010;1:134. doi: https://doi.org/10.3389/fmicb.2010.00134
6. Chopra I, Hesse L, O’Neill A. Discovery and development of new anti-bacterial drugs. Pharmacochemistry Library. Trends in Drug Research III. 2002;32:213–225. doi: https://doi.org/10.1016/s0165-7208(02)80022-8
7. Gupta V, Datta P. Next-generation strategy for treating drug resistant bacteria: Antibiotic hybrids. Indian J Med Res. 2019; 149(2):97–106. doi: https://doi.org/10.4103/ijmr.IJMR_755_18
8. Terreni M, Taccani M, Pregnolato M. New Antibiotics for Multidrug-Resistant Bacterial Strains: Latest Research Developments and Future Perspectives. Molecules. 2021; 26(9):2671. doi: https://doi.org/10.3390/molecules26092671
9. Yusuf E, Bax HI, Verkaik NJ, van Westreenen M. An Update on Eight “New” Antibiotics against Multidrug-Resistant Gram-Negative Bacteria. J Clin Med. 2021;10(5):1068. doi: https://doi.org/10.3390/jcm10051068
10. Andrei S, Droc G, Stefan G. FDA approved antibacterial drugs: 2018–2019. Discoveries (Craiova). 2019;7(4):e102. doi: https://doi.org/10.15190/d.2019.15
11. Zhang T, Smith MA, Camp PG, et al. Prescription drug dispensing profiles for one million children: a population-based analysis. Eur J Clin Pharmacol. 2013;69(3):581–588. doi: https://doi.org/10.1007/s00228-012-1343-1
12. Fink G, D’acremont V, Leslie HH, Cohen J. Antibiotic exposure among children younger than 5 years in low-income and middle-income countries: a cross-sectional study of nationally representative facility-based and household-based surveys. Lancet Infect Dis. 2020;20(2):179–187. doi: https://doi.org/10.1016/S1473-3099(19)30572-9
13. Klein EY, Van Boeckel TP, Martinez EM, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci U S A. 2018;115(15):e3463–e3470. doi: https://doi.org/10.1073/pnas.1717295115
14. Arnold A, Coventry LL, Foster MJ, et al. The Burden of SelfReported Antibiotic Allergies in Health Care and How to Address It: A Systematic Review of the Evidence. J Allergy Clin Immunol Pract. 2023;11(10):3133–3145.e3. doi: https://doi.org/10.1016/j.jaip.2023.06.025
15. Pammi M, O’Brien JL, Ajami NJ, et al. Development of the cutaneous microbiome in the preterm infant: A prospective longitudinal study. PLoS One. 2017;12(4):e0176669. doi: https://doi.org/10.1371/journal.pone.0176669
16. Chen X, Shi Y. Determinants of microbial colonization in the premature gut. Mol Med. 2023;29(1):90. doi: https://doi.org/10.1186/s10020-023-00689-4
17. Thänert R, Sawhney SS, Schwartz DJ, Dantas G. The resistance within: Antibiotic disruption of the gut microbiome and resistome dynamics in infancy. Cell Host Microbe. 2022;30(5):675–683. doi: https://doi.org/10.1016/j.chom.2022.03.013
18. Samarra A, Cabrera-Rubio R, Mart nez-Costa C, Collado MC. The role of Bifidobacterium genus in modulating the neonate microbiota: implications for antibiotic resistance acquisition in early life. Gut Microbes. 2024;16(1):2357176. doi: https://doi.org/10.1080/19490976.2024.2357176
19. Samarra A, Esteban-Torres M, Cabrera-Rubio R, et al. Maternalinfant antibiotic resistance genes transference: what do we know? Gut Microbes. 2023;15(1):2194797. doi: https://doi.org/10.1080/19490976.2023.2194797
20. Huddleston JR. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect Drug Resist. 2014;7:167–176. doi: https://doi.org/10.2147/IDR.S48820
21. Robertson RC, Manges AR, Finlay BB, Prendergast AJ. The Human Microbiome and Child Growth — First 1000 Days and Beyond. Trends Microbiol. 2019;27(2):131–147. doi: https://doi.org/10.1016/j.tim.2018.09.008
22. Belyaeva IA, Namazova-Baranova LS, Bombardirova EP, et al. Supplemental Feeding Implementation: Window of Opportunities for the Intestinal Microbiota Development and Immune Responses Modulation. Voprosy sovremennoi pediatrii — Current Pediatrics. 2023;22(6):506–512. (In Russ). doi: https://doi.org/10.15690/vsp.v22i6.2663]
23. Pantazi AC, Balasa AL, Mihai CM, et al. Development of Gut Microbiota in the First 1000 Days after Birth and Potential Interventions. Nutrients. 2023;15(16):3647. doi: https://doi.org/10.3390/nu15163647
24. Chu DM, Valentine GC, Seferovic MD, Aagaard KM. The Development of the Human Microbiome: Why Moms Matter. Gastroenterol Clin North Am. 2019;48(3):357–375. doi: https://doi.org/10.1016/j.gtc.2019.04.004
25. Stencel-Gabriel K, Gabriel I, Wiczkowski A, et al. Prenatal priming of cord blood T lymphocytes by microbiota in the maternal vagina. Am J Reprod Immunol. 2009;61(3):246–252. doi: https://doi.org/10.1111/j.1600-0897.2009.00687.x
26. Arrieta MC, Stiemsma LT, Amenyogbe N, et al. The intestinal microbiome in early life: health and disease. Front Immunol. 2014;5:427. doi: https://doi.org/10.3389/fimmu.2014.00427
27. Gasparrini AJ, Wang B, Sun X, et al. Persistent metagenomic signatures of early-life hospitalization and antibiotic treatment in the infant gut microbiota and resistome. Nat Microbiol. 2019;4(12):2285–2297. doi: https://doi.org/10.1038/s41564-019-0550-2
28. Nagpal R, Tsuji H, Takahashi T, et al. Ontogenesis of the Gut Microbiota Composition in Healthy, Full-Term, Vaginally Born and Breast-Fed Infants over the First 3 Years of Life: A Quantitative Bird’s-Eye View. Front Microbiol. 2017;8:1388. doi: https://doi.org/10.3389/fmicb.2017.01388
29. Busi SB, de Nies L, Habier J, et al. Persistence of birth modedependent effects on gut microbiome composition, immune system stimulation and antimicrobial resistance during the first year of life. ISME Commun. 2021;1(1):8. doi: https://doi.org/10.1038/s43705-021-00003-5
30. Bokulich NA, Chung J, Battaglia T, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8(343):343ra82. doi: https://doi.org/10.1126/scitranslmed.aad7121
31. Beller L, Deboutte W, Falony G, et al. Successional Stages in Infant Gut Microbiota Maturation. mBio. 2021;12(6):e0185721. doi: https://doi.org/10.1128/mBio.01857-21
32. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016;352(6285):539–544. doi: https://doi.org/10.1126/science.aad9378
33. Depner M, Taft DH, Kirjavainen PV, et al. Maturation of the gut microbiome during the first year of life contributes to the protective farm effect on childhood asthma. Nat Med. 2020;26(11): 1766–1775. doi: https://doi.org/10.1038/s41591-020-1095-x
34. Henrick BM, Rodriguez L, Lakshmikanth T, et al. Bifidobacteriamediated immune system imprinting early in life. Cell. 2021;184(15):3884–3898.e11. doi: https://doi.org/10.1016/j.cell.2021.05.030
35. Olin A, Henckel E, Chen Y, et al. Stereotypic Immune System Development in Newborn Children. Cell. 2018;174(5):1277–1292. e14. doi: https://doi.org/10.1016/j.cell.2018.06.045
36. Normal’naya beremennost’: Clinical guidelines. Russian Society of Obstetricians and Gynecologists. Ministry of Health of the Russian Federation; 2023. (In Russ).] Доступно по: https://cr.minzdrav.gov.ru/recomend/288. Ссылка активна на 14.08.2024.
37. Brokaw A, Furuta A, Dacanay M, et al. Bacterial and Host Determinants of Group B Streptococcal Vaginal Colonization and Ascending Infection in Pregnancy. Front Cell Infect Microbiol. 2021;11:720789. doi: https://doi.org/10.3389/fcimb.2021.720789
38. Nusman CM, Snoek L, van Leeuwen LM, et al. Group B Streptococcus Early-Onset Disease: New Preventive and Diagnostic Tools to Decrease the Burden of Antibiotic Use. Antibiotics (Basel). 2023;12(3):489. doi: https://doi.org/10.3390/antibiotics12030489
39. Le Doare K, O’Driscoll M, Turner K, et al. Intrapartum Antibiotic Chemoprophylaxis Policies for the Prevention of Group B Streptococcal Disease Worldwide: Systematic Review. Clin Infect Dis. 2017;65(suppl_2):S143–S151. doi: https://doi.org/10.1093/cid/cix654
40. Miselli F, Cuoghi Costantini R, Creti R, et al. Escherichia coli Is Overtaking Group B Streptococcus in Early-Onset Neonatal Sepsis. Microorganisms. 2022;10(10):1878. doi: https://doi.org/10.3390/microorganisms10101878
41. Committee on Practice Bulletins-Obstetrics. ACOG Practice Bulletin No. 199: Use of Prophylactic Antibiotics in Labor and Delivery. Obstet Gynecol. 2018;132(3):e103–e119. doi: https://doi.org/10.1097/AOG.0000000000002833
42. Coker MO, Hoen AG, Dade E, et al. Specific class of intrapartum antibiotics relates to maturation of the infant gut microbiota: a prospective cohort study. BJOG. 2020;127(2):217–227. doi: https://doi.org/10.1111/1471-0528.15799
43. Stearns JC, Simioni J, Gunn E, et al. Intrapartum antibiotics for GBS prophylaxis alter colonization patterns in the early infant gut microbiome of low risk infants. Sci Rep. 2017;7(1):16527. doi: https://doi.org/10.1038/s41598-017-16606-9
44. Rooney AM, Timberlake K, Brown KA, et al. Each Additional Day of Antibiotics Is Associated With Lower Gut Anaerobes in Neonatal Intensive Care Unit Patients. Clin Infect Dis. 2020;70(12): 2553–2560. doi: https://doi.org/10.1093/cid/ciz698
45. Azad MB, Konya T, Persaud RR, et al. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG. 2016;123(6):983–993. doi: https://doi.org/10.1111/1471-0528.13601
46. Zhou P, Zhou Y, Liu B, et al. Perinatal Antibiotic Exposure Affects the Transmission between Maternal and Neonatal Microbiota and Is Associated with Early-Onset Sepsis. mSphere. 2020;5(1): e00984-19. doi: https://doi.org/10.1128/mSphere.00984-19
47. Tanaka S, Kobayashi T, Songjinda P, et al. Influence of antibiotic exposure in the early postnatal period on the development of intestinal microbiota. FEMS Immunol Med Microbiol. 2009;56(1):80–87. doi: https://doi.org/10.1111/j.1574-695X.2009.00553.x
48. Zwittink RD, Renes IB, van Lingen RA, et al. Association between duration of intravenous antibiotic administration and early-life microbiota development in late-preterm infants. Eur J Clin Microbiol Infect Dis. 2018;37(3):475–483. doi: https://doi.org/10.1007/s10096-018-3193-y
49. Ainonen S, Tejesvi MV, Mahmud MR, et al. Antibiotics at birth and later antibiotic courses: effects on gut microbiota. Pediatr Res. 2022;91(1):154–162. doi: https://doi.org/10.1038/s41390-021-01494-7
50. Zou ZH, Liu D, Li HD, et al. Prenatal and postnatal antibiotic exposure influences the gut microbiota of preterm infants in neonatal intensive care units. Ann Clin Microbiol Antimicrob. 2018;17(1):9. doi: https://doi.org/10.1186/s12941-018-0264-y
51. Cuna A, Morowitz MJ, Sampath V. Early antibiotics and risk for necrotizing enterocolitis in premature infants: A narrative review. Front Pediatr. 2023;11:1112812. doi: https://doi.org/10.3389/ fped.2023.1112812
52. Raba AA, O’Sullivan A, Semberova J, et al. Are antibiotics a risk factor for the development of necrotizing enterocolitis-case-control retrospective study. Eur J Pediatr. 2019;178(6):923–928. doi: https://doi.org/10.1007/s00431-019-03373-0
53. Cunha AJLA, Santos AC, Medronho RA, Barros H. Use of antibiotics during pregnancy is associated with infection in children at four years of age in Portugal. Acta Paediatr. 2021;110(6): 1911–1915. doi: https://doi.org/10.1111/apa.15733
54. Miller JE, Wu C, Pedersen LH, et al. Maternal antibiotic exposure during pregnancy and hospitalization with infection in offspring: a population-based cohort study. Int J Epidemiol. 2018;47(2): 561–571. doi: https://doi.org/10.1093/ije/dyx272
55. Loewen K, Monchka B, Mahmud SM, et al. Prenatal antibiotic exposure and childhood asthma: a population-based study. Eur Respir J. 2018;52(1):1702070 doi: https://doi.org/10.1183/13993003.02070-2017
56. Baron R, Taye M, Besseling-van der Vaart I, et al. The relationship of prenatal antibiotic exposure and infant antibiotic administration with childhood allergies: a systematic review. BMC Pediatr. 2020;20(1):312. doi: https://doi.org/10.1186/s12887-020-02042-8
57. Huang FQ, Lu CY, Wu SP, et al. Maternal exposure to antibiotics increases the risk of infant eczema before one year of life: a metaanalysis of observational studies. World J Pediatr. 2020;16(2): 143–151. doi: https://doi.org/10.1007/s12519-019-00301-y
58. Örtqvist AK, Lundholm C, Halfvarson J, et al. Fetal and early life antibiotics exposure and very early onset inflammatory bowel disease: a population-based study. Gut. 2019;68(2):218–225. doi: https://doi.org/10.1136/gutjnl-2017-314352
59. Hamad AF, Alessi-Severini S, Mahmud SM, et al. Prenatal antibiotics exposure and the risk of autism spectrum disorders: a population-based cohort study. PLoS One. 2019;14(8):e0221921. doi: https://doi.org/10.1371/journal.pone.0221921
60. Leong KSW, McLay J, Derraik JGB, et al. Associations of prenatal and childhood antibiotic exposure with obesity at age 4 years. JAMA Netw Open. 2020;3(1):e1919681. doi: https://doi.org/10.1001/jamanetworkopen.2019.19681
61. Zhao L, Yang X, Liang Y, et al. Temporal development and potential interactions between the gut microbiome and resistome in early childhood. Microbiol Spectr. 2024;12(2):e0317723. doi: https://doi.org/10.1128/spectrum.03177-23
62. Aminov RI. The role of antibiotics and antibiotic resistance in nature. Environ Microbiol. 2009;11(12):2970–2988. doi: https://doi.org/10.1111/j.1462-2920.2009.01972.x
63. European Centre for Disease Prevention Control/European Medicines Agency Joint Working Group (ECDC/EMEA). The Bacterial Challenge: Time to React. Stockholm; 2009. 42 p. Available online: www.ecdc.europa.eu/en/publications/Publications/0909_TER_The_ Bacterial_Challenge_Time_to_React.pdf. Accessed on August 12, 2024.
64. Sosa-Moreno A, Comstock SS, Sugino KY, et al. Perinatal risk factors for fecal antibiotic resistance gene patterns in pregnant women and their infants. PLoS One. 2020;15(6):e0234751. doi: https://doi.org/10.1371/journal.pone.0234751
65. Yassour M, Jason E, Hogstrom LJ, et al. Strain-Level Analysis of Mother-to-Child Bacterial Transmission during the First Few Months of Life. Cell Host Microbe. 2018;24(1):146–154.e4. doi: https://doi.org/10.1016/j.chom.2018.06.007
66. Klassert TE, Zubiria-Barrera C, Kankel S, et al. Early Bacterial Colonization and Antibiotic Resistance Gene Acquisition in Newborns. Front Cell Infect Microbiol. 2020;10:332. doi: https://doi.org/10.3389/fcimb.2020.00332
67. Li X, Stokholm J, Brejnrod A, et al. The infant gut resistome associates with E. coli, environmental exposures, gut microbiome maturity, and asthma-associated bacterial composition. Cell Host Microbe. 2021;29(6):975–987.e4. doi: https://doi.org/10.1016/j.chom.2021.03.017
68. Duranti S, Lugli GA, Mancabelli L, et al. Prevalence of antibiotic resistance genes among human gut-derived bifidobacteria. Appl Environ Microbiol. 2017;83(3):e02894-16. doi: https://doi.org/10.1128/AEM.02894-16
69. Aires J, Doucet-Populaire F, Butel MJ. Tetracycline resistance mediated by tet(W), tet(M), and tet(O) genes of Bifidobacterium isolates from humans. Appl Environ Microbiol. 2007;73(8): 2751–2754. doi: https://doi.org/10.1128/AEM.02459-06
70. Moubareck C, Lecso M, Pinloche E, et al. Inhibitory impact of bifidobacteria on the transfer of beta-lactam resistance among enterobacteriaceae in the gnotobiotic mouse digestive tract. Appl Environ Microbiol. 2007;73(3):855–860. doi: https://doi.org/10.1128/AEM.02001-06
71. Taft DH, Liu J, Maldonado-Gomez MX, et al. Bifidobacterial Dominance of the Gut in Early Life and Acquisition of Antimicrobial Resistance. mSphere. 2018;3(5):e00441-18. doi: https://doi.org/10.1128/mSphere.00441-18
72. Leo S, Cetiner OF, Pittet LF, et al. Metagenomics analysis of the neonatal intestinal resistome. Front Pediatr. 2023;11:1169651. doi: https://doi.org/10.3389/fped.2023.1169651
73. Reyman M, van Houten MA, Watson RL, et al. Effects of early-life antibiotics on the developing infant gut microbiome and resistome: a randomized trial. Nat Commun. 2022;13(1):893. doi: https://doi.org/10.1038/s41467-022-28525-z
74. Patangia DV, Grimaud G, O’Shea CA, et al. Early life exposure of infants to benzylpenicillin and gentamicin is associated with a persistent amplification of the gut resistome. Microbiome. 2024;12(1):19. doi: https://doi.org/10.1186/s40168-023-01732-6
75. Huang MS, Cheng CC, Tseng SY, et al. Most commensally bactеrial strains in human milk of healthy mothers display multiple antibiotic resistance. Microbiologyopen. 2019;8:e00618. doi: https://doi.org/10.1002/mbo3.618
76. Li X, Zhou Y, Zhan X, et al. Breast milk is a potential reservoir for livestock-associated Staphylococcus aureus and communityassociated Staphylococcus aureus in Shanghai, China. Front Microbiol. 2018;8:2639. doi: https://doi.org/10.3389/fmicb.2017.02639
77. Behari P, Englund J, Alcasid G, et al. Transmission of methicillinresistant Staphylococcus aureus to preterm infants through breast milk. Infect Control Hosp Epidemiol. 2004;25(9):778–780. doi: https://doi.org/10.1086/502476
78. Pärnänen K, Karkman A, Hultman J, et al. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Nat Commun. 2018;9(1):3891. doi: https://doi.org/10.1038/s41467-018-06393-w
79. Gopalakrishna KP, Hand TW. Influence of Maternal Milk on the Neonatal Intestinal Microbiome. Nutrients. 2020;12(3):823. doi: https://doi.org/10.3390/nu12030823
80. Zivkovic AM, German JB, Lebrilla CB, Mills DA. Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4653–4658. doi: https://doi.org/10.1073/pnas.1000083107
81. Puccio G, Alliet P, Cajozzo C, et al. Effects of Infant Formula With Human Milk Oligosaccharides on Growth and Morbidity: A Randomized Multicenter Trial. J Pediatr Gastroenterol Nutr. 2017;64(4):624–631. doi: https://doi.org/10.1097/MPG.0000000000001520
82. Yousuf EI, Carvalho M, Dizzell SE, et al. Persistence of Suspected Probiotic Organisms in Preterm Infant Gut Microbiota Weeks After Probiotic Supplementation in the NICU. Front Microbiol. 2020;11:574137. doi: https://doi.org/10.3389/fmicb.2020.574137
83. Esaiassen E, Hjerde E, Cavanagh JP, et al. Effects of Probiotic Supplementation on the Gut Microbiota and Antibiotic Resistome Development in Preterm Infants. Front Pediatr. 2018;6:347. doi: https://doi.org/10.3389/fped.2018.00347
84. Eor JY, Lee CS, Moon SH, et al. Effect of Probiotic-Fortified Infant Formula on Infant Gut Health and Microbiota Modulation. Food Sci Anim Resour. 2023;43(4):659–673. doi: https://doi.org/10.5851/kosfa.2023.e26
85. Zhong H, Wang XG, Wang J, et al. Impact of probiotics supplement on the gut microbiota in neonates with antibiotic exposure: an open-label single-center randomized parallel controlled study. World J Pediatr. 2021;17(4):385–393. doi: https://doi.org/10.1007/s12519-021-00443-y
86. van den Akker CHP, van Goudoever JB, Shamir R, et al. Probiotics and Preterm Infants: A Position Paper by the European Society for Paediatric Gastroenterology Hepatology and Nutrition Committee on Nutrition and the European Society for Paediatric Gastroenterology Hepatology and Nutrition Working Group for Probiotics and Prebiotics. J Pediatr Gastroenterol Nutr. 2020;70(5):664–680. doi: https://doi.org/10.1097/MPG.0000000000002655
87. Chang HY, Lin CY, Chiang Chiau JS, et al. Probiotic supplementation modifies the gut microbiota profile of very low birth weight preterm infants during hospitalization. Pediatr Neonatol. 2024;65(1):55–63. doi: https://doi.org/10.1016/j.pedneo.2023.06.002
88. Guitor AK, Yousuf EI, Raphenya AR, et al. Capturing the antibiotic resistome of preterm infants reveals new benefits of probiotic supplementation. Microbiome. 2022;10(1):136. doi: https://doi.org/10.1186/s40168-022-01327-7
89. Millan B, Park H, Hotte N, et al. Fecal Microbial Transplants Reduce Antibiotic-resistant Genes in Patients With Recurrent Clostridium difficile Infection. Clin Infect Dis. 2016;62(12): 1479–1486. doi: https://doi.org/10.1093/cid/ciw185
90. Lam KN, Spanogiannopoulos P, Soto-Perez P, et al. Phagedelivered CRISPR-Cas9 for strain-specific depletion and genomic deletions in the gut microbiome. Cell Rep. 2021;37:109930. doi: 10.1016/j.celrep.2021.109930
91.
Review
For citations:
Belyaeva I.A., Namazova-Baranova L.S., Bombardirova E.P., Turti T.V., Shukenbayeva R.A. Outcomes of Antibiotic Therapy During Perinatal Period for the Early Age Child’s Intestinal Microbiota. Current Pediatrics. 2024;23(6):447-455. (In Russ.) https://doi.org/10.15690/vsp.v23i6.2822