Preview

Current Pediatrics

Advanced search

Incomplete Phenotype of Autosomal Dominant Spastic Paraplegia with Intellectual Disability, Nystagmus, and Obesity (SINO Syndrome) Associated with Pathogenic Variant in the KIDINS220 Gene: Case Study

https://doi.org/10.15690/vsp.v24i6.2980

Abstract

Background. Hereditary spastic paraplegia (HSP) is clinically and genetically heterogeneous group of neurodegenerative diseases. More than 90 forms of NSP with autosomal dominant, autosomal recessive, X-linked and mitochondrial inheritance have been described. One of the recently described autosomal dominant forms is spastic paraplegia with intellectual disability, nystagmus, and obesity (SINO syndrome; OMIM #617296) associated with heterozygous variants in the KIDINS220 gene. There are no cases of this disease described in Russian population.
Case description. Sporadic case of SINO syndrome in 3.5-year-old female patient is presented. The diagnosis was confirmed by molecular genetic testing: novel pathogenic variant chr2:8730980T>TC (p.5055dupG; p.Asn1686fs) in the KIDINS220 gene was revealed in heterozygous state. The specific feature of this case was incomplete manifestation of syndrome typical phenotype and presence of various comorbid symptoms. Along with spastic paraplegia manifestations and high anthropometric indicators there was corpus callosum lipoma, premature thelarche, dorsal fistula, however, intellectual disability, nystagmus and obesity were absent.
Conclusion. The described case confirms recent data on the association of pathogenic variants in the KIDINS220 gene with neurodevelopmental disorders and extraneural manifestations determined by the encoded protein role in neuronal differentiation and various signaling pathways. Analysis of SINO syndrome clinical picture expands our understanding of disease phenotype.

About the Authors

Olga A. Klochkova
Pediatrics and Child Health Research Institute in Petrovsky National Research Centre of Surgery; LLC “Nashe vremya”
Russian Federation

Moscow


Disclosure of interest:

Not declared.



Lyudmila U. Vrachinskaya
Pediatrics and Child Health Research Institute in Petrovsky National Research Centre of Surgery
Russian Federation

Moscow


Disclosure of interest:

Not declared.



References

1. Kutlubaeva RF, Kutlubaev MA, Magzhanov RV, et al. Hereditary spastic paraplegias. Nervno-myshechnye bolezni = Neuromuscular Diseases. 2023;13(4):74–82. (In Russ). doi: https://doi.org/10.17650/2222-8721-2023-13-4-74-82

2. Murala S, Nagarajan E, Bollu PC. Hereditary spastic paraplegia. Neurol Sci. 2021;42(3):883–894. doi: https://doi.org/10.1007/s10072-020-04981-7

3. De Souza PVS, de Rezende Pinto WBV, de Rezende Batistella GN, et al. Hereditary spastic paraplegia: Clinical and genetic hallmarks. Cerebellum. 2017;16(2):525–551. doi: https://doi.org/10.1007/s12311-016-0803-z

4. Salinas S, Proukakis C, Crosby A, Warner TT. Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms. Lancet Neurol. 2008;7(12):1127–1138. doi: https://doi.org/10.1016/S1474-4422(08)70258-8

5. Lo Giudice T, Lombardi F, Santorelli FM, et al. Hereditary spastic paraplegia: clinical genetic characteristics and evolving molecular mechanisms. Exp Neurol. 2014;261:518–539. doi: https://doi.org/10.1016/j.expneurol.2014.06.011

6. Meyyazhagan A, Orlacchio A. Hereditary spastic paraplegia: an update. Int J Mol Sci. 2022;23(3):1697. doi: https://doi.org/10.3390/ijms23031697

7. Koh K, Ishiura H, Tsuji S, Takiyama Y. JASPAC: Japan Spastic Paraplegia Research Consortium. Brain Sci. 2018;8(8):153. doi: https://doi.org/10.3390/brainsci8080153

8. Rudenskaya GE, Kadnikova VA, Bostanova FM, et al. Hereditaty spastic paraplegias: new findings and rare phenotypes. Medical Genetics. 2025;24(8):100–105. (In Russ). doi: https://doi.org/10.25557/2073-7998.2025.08.100-105

9. Finsterer J, Löscher W, Quasthoff S, et al. Hereditary spastic paraplegias with autosomal dominant, recessive, X-linked, or maternal trait of inheritance. J Neurol Sci. 2012;318(1-2):1–18. doi: https://doi.org/10.1016/j.jns.2012.03.025

10. Josifova DJ, Monroe GR, Tessadori F, et al. Heterozygous KIDINS220/ARMS nonsense variants cause spastic paraplegia, intellectual disability, nystagmus, and obesity. Hum Mol Genet. 2016;25(11):2158–2167. doi: https://doi.org/10.1093/hmg/ddw082

11. Jaudon F, Chiacchiaretta M, Albini M, et al. Kidins220/ ARMS controls astrocyte calcium signaling and neuron-astrocyte communication. Cell Death Differ. 2020;27(5):1505–1519. doi: https://doi.org/10.1038/s41418-019-0431-5

12. Al Hussein HS, Guerra LM, Raza SA, et al. Pure Hereditary Spastic Paraplegia in a Patient With a Novel Heterozygous KIDINS220 Gene Mutation. Cureus. 2024;16(7):e64023. doi: https://doi.org/10.7759/cureus.64023

13. Yang L, Zhang W, Peng J, Yin F. Heterozygous KIDINS220 mutation leads to spastic paraplegia and obesity in an Asian girl. Eur J Neurol. 2018;25(5):e53–e54. doi: https://doi.org/10.1111/ene.13600

14. Zhang K, Sun W, Liu Y, et al. SINO Syndrome Causative KIDINS220/ARMS Gene Regulates Adipocyte Differentiation. Front Cell Dev Biol. 2021;9:619475. doi: https://doi.org/10.3389/fcell.2021.619475

15. Zhao M, Chen YJ, Wang MW, et al. Genetic and Clinical Profile of Chinese Patients with Autosomal Dominant Spastic Paraplegia. Mol Diagn Ther. 2019;23(6):781–789. doi: https://doi.org/10.1007/s40291-019-00426-w

16. Mero IL, Mørk HH, Sheng Y, et al. Homozygous KIDINS220 loss-of-function variants in fetuses with cerebral ventriculomegaly and limb contractures. Hum Mol Genet. 2017;26(19):3792–3796. doi: https://doi.org/10.1093/hmg/ddx263

17. Jacquemin V, Antoine M, Duerinckx S, et al. TrkA mediates effect of novel KIDINS220 mutation in human brain ventriculomegaly. Hum Mol Genet. 2021;29(23):3757–3764. doi: https://doi.org/10.1093/hmg/ddaa245

18. El-Dessouky SH, Issa MY, Aboulghar MM, et al. Prenatal delineation of a distinct lethal fetal syndrome caused by a homozygous truncating KIDINS220 variant. Am J Med Genet A. 2020; 182(12):2867–2876. doi: https://doi.org/10.1002/ajmg.a.61858

19. Brady LI, DeFrance B, Tarnopolsky M. Pre- and Postnatal Characterization of Autosomal Recessive KIDINS220-Associated Ventriculomegaly. Mol Syndromol. 2022;13(5):419–424. doi: https://doi.org/10.1159/000522486

20. Bonati MT, Baldoli C, Taurino J, et al. A Novel KIDINS220 Pathogenic Variant Associated with the Syndromic Spastic Paraplegia SINO: An Expansion of the Brain Malformation Spectrum and a Literature Review. Genes (Basel). 2024;15(9):1190. doi: https://doi.org/10.3390/genes15091190

21. Sizyakova OM, Senina OS, Usova DV, et al. Comorbidity of autosomal recessive diseases with developmental delay: а clinical case. Medical genetics = Medicinskaya genetika. 2025;24(8):117–119. (In Russ). doi: https://doi.org/10.25557/2073-7998.2025.08.117-119

22. Almacellas-Barbanoj A, Albini M, Satapathy A, et al. Kidins220/ ARMS modulates brain morphology and anxiety-like traits in adult mice. Cell Death Discov. 2022;8(1):58. doi: https://doi.org/10.1038/s41420-022-00854-4

23. Alstrup M, Cesca F, Krawczun-Rygmaczewska A, et al. Refining the phenotype of SINO syndrome: A comprehensive cohort report of 14 novel cases. Genet Med. 2024;26(11):101219. doi: https://doi.org/10.1016/j.gim.2024.101219

24. Cai S, Cai J, Jiang WG, Ye L. Kidins220 and tumour development: Insights into a complexity of cross-talk among signalling pathways (Review). Int J Mol Med. 2017;40(4):965–971. doi: https://doi.org/10.3892/ijmm.2017.3093

25. Richards J, Dorand MF, Paszkowiak M, et al. Significantly higher rates of KIDINS220 polymorphisms in patients with obesity and end-stage renal disease. Obes Pillars. 2024;13:100155. doi: https://doi.org/10.1016/j.obpill.2024.100155


Review

For citations:


Klochkova O.A., Vrachinskaya L.U. Incomplete Phenotype of Autosomal Dominant Spastic Paraplegia with Intellectual Disability, Nystagmus, and Obesity (SINO Syndrome) Associated with Pathogenic Variant in the KIDINS220 Gene: Case Study. Current Pediatrics. 2025;24(6):469-476. (In Russ.) https://doi.org/10.15690/vsp.v24i6.2980

Views: 18

JATS XML

ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)