Preview

Вопросы современной педиатрии

Расширенный поиск

ОМЕГА-3 ПОЛИНЕНАСЫЩЕННЫЕ ЖИРНЫЕ КИСЛОТЫ И КОГНИТИВНОЕ РАЗВИТИЕ ДЕТЕЙ

Полный текст:

Аннотация

Омега-3 полиненасыщенные жирные кислоты (ПНЖК) — важный нутриент, без которого невозможна поддержка нормальной жизнедеятельности. Омега-3 ПНЖК играют важную роль в нейрогенезе, нейротрансмиссии, нейропротекции и являются необходимыми для развития мозга человека. В работе рассмотрены результаты фундаментальных и клинических исследований о роли омега-3 ПНЖК в онтогенезе. Проведен систематический анализ физиологических эффектов омега-3 ПНЖК на молекулярном уровне. Показана взаимосвязь дефицита омега-3 ПНЖК со снижением интеллектуальных способностей и увеличением гиперактивности у ребенка. Необходимость адекватного употребления омега-3 ПНЖК в раннем дошкольном периоде и в начальной школе подтверждается результатами клинических исследований.

Об авторах

О. А. Громова
РСЦ института микроэлементов ЮНЕСКО, Москва Ивановская государственная медицинская академия
Россия

Контактная информация: Громова Ольга Алексеевна, доктор медицинских наук, профессор кафедры клинической фармакологии Ивановской государственной медицинской академии, научный консультант Российского сателлитного центра Института микроэлементов ЮНЕСКО Адрес: 109652, Москва, Большой Тишинский пер., д. 26, стр. 15/16, тел.: (495) 346-32-75



И. Ю. Торшин
РСЦ института микроэлементов ЮНЕСКО, Москва
Россия


Е. Ю. Егорова
Ивановский государственный университет
Россия


Список литературы

1. Heemskerk J. W., Vossen R. C., van Dam-Mieras M. C. Polyunsaturated fatty acids and function of platelets and endothelial cells // Curr. Opin. Lipidol. — 1996; 7: 24–29.

2. Громова О. А., Торшин И. Ю., Сухих Г. Т. и др. Роли различных форм омега-3 ПНЖК в акушерстве и неонатологии. — М., 2009. — 64 с.

3. Innis S. M. Dietary (n-3) fatty acids and brain development // J. Nutr. — 2007; 137 (4): 855–859.

4. McNamara R. K., Carlson S. E. Role of omega-3 fatty acids in brain development and function: potential implications for the pathogenesis and prevention of psychopathology // Prostaglandins Leukot. Essent. Fatty. Acids. — 2006; 75 (4–5): 329–349.

5. Cohen J. T., Bellinger D. C., Connor W. E., Shaywitz B. A. A quantitative analysis of prenatal intake of n-3 polyunsaturated fatty acids and cognitive development // Am. J. Prev. Med. — 2005; 29 (4): 366–374.

6. Ryan A. S., Astwood J. D., Gautier S. et al. Effects of long-chain polyunsaturated fatty acid supplementation on neurodevelopment in childhood: a review of human studies // Prostaglandins Leukot. Essent. Fatty. Acids. — 2010; 82 (4–6): 305–314.

7. Kirby A., Woodward A., Jackson S. et al. A double-blind, placebo-controlled study investigating the effects of omega-3 supplementation in children aged 8–10 years from a mainstream school population // Res. Dev. Disabil. — 2010; 31 (3): 718–730.

8. Eilander A., Hundscheid D. C., Osendarp S. J. et al. Effects of n-3 long chain polyunsaturated fatty acid supplementation on visual and cognitive development throughout childhood: a review of human studies // Prostaglandins Leukot. Essent. Fatty. Acids. — 2007; 76 (4): 189–203.

9. Бурцев Е. М. Нарушения мозгового кровообращения в молодом возрасте. — М.: Медицина, 1978. — 457 с.

10. Волосовец А. П., Кривопустов С. П. Инсульт головного мозга и инфаркт миокарда у детей: современный взгляд на проблему // Здоровье ребенка. — 2006; 2 (2): 12–20.

11. Kang J. X., Leaf A. Antiarrhythmic effects of polyunsaturated fatty acids // Lipids. — 1996; 31 (Suppl.): 41–44.

12. Serhan C. N. Novel eicosanoid and docosanoid mediators: resolvins, docosatrienes, and neuroprotectins // Curr. Opin. Clin. Nutr. Metab. Care. — 2005; 8 (2): 115–121.

13. Bazan N. G. The onset of brain injury and neurodegeneration triggers the synthesis of docosanoid neuroprotective signaling // Cell Mol. Neurobiol. — 2006; 26 (4–6): 901–913.

14. Bazan N. G. Omega-3 fatty acids, pro-inflammatory signaling and neuroprotection // Curr. Opin. Clin. Nutr. Metab. Care. — 2007; 10 (2): 136–141.

15. Ortmann O., Catt K. J., Schulz K. D., Emons G. Modulatory action of progesterone and progesterone antagonists on hypothalamicpituitary function // Hum Reprod. — 1994; 9 (1): 53–62.

16. Catalan J., Moriguchi T., Slotnick B. et al. Cognitive deficits in docosahexaenoic acid-deficient rats // Behav. Neurosci. — 2002; 116 (6): 1022–1031.

17. Jiang L. H., Shi Y., Wang L. S., Yang Z. R. The influence of orally administered docosahexaenoic acid on cognitive ability in aged mice // J. Nutr. Biochem. — 2009; 20 (9): 735–741.

18. Muggli R. LCFUPA and brain health. — DSM Nutritional Рroducts, 2007. — Р. 4.

19. Van Eijsden M., Hornstra G., van der Wal M. F. et al. Maternal n-3, n-6, and trans fatty acid profile early in pregnancy and term birth weight: a prospective cohort study // Am. J. Clin. Nutr. — 2008; 87 (4): 887–895.

20. Helland I. B., Saugstad O. D., Smith L. et al. Similar effects on infants of n-3 and n-6 fatty acids supplementation to pregnant and lactating women // Pediatrics. — 2001; 108 (5): 82.

21. Smithers L. G., Gibson R. A., McPhee A., Makrides M. Higher dose of docosahexaenoic acid in the neonatal period improves visual acuity of preterm infants: results of a randomized controlled trial // Am. J. Clin. Nutr. — 2008; 88 (4): 1049–1056.

22. Judge M. P., Harel O., Lammi-Keefe C. J. A docosahexaenoic acidfunctional food during pregnancy benefits infant visual acuity at four but not six months of age // Lipids. — 2007; 42 (2): 117–23.

23. Jorgensen M. H., Hernell O., Hughes E., Michaelsen K. F. Is there a relation between docosahexaenoic acid concentration in mothers' milk and visual development in term infants? // J. Pediatr. Gastroenterol. Nutr. — 2001; 32 (3): 293–296.

24. Henriksen C., Haugholt K., Lindgren M. et al. Improved cognitive development among preterm infants attributable to early supplementation of human milk with docosahexaenoic acid and arachidonic acid // Pediatrics. — 2008; 121 (6): 1137–1145.

25. Ryan A. S., Nelson E. B. Assessing the effect of docosahexaenoic acid on cognitive functions in healthy, preschool children: a randomized, placebo-controlled, double-blind study // Clin. Pediatr. (Phila). — 2008; 47 (4): 355–362.

26. Cohen J. T., Bellinger D. C., Connor W. E., Shaywitz B. A. A quantitative analysis of prenatal intake of n-3 polyunsaturated fatty acids and cognitive development // Am. J. Prev. Med. — 2005; 29 (4): 366–374.

27. Bakker E. C. Long-chain polyunsaturated fatty acids at birth and motor function at 7 years of age, in Long-chain polyunsaturated fatty acids and child development. — Maastricht: Universitaire Pers, 2002. — Р. 47–102.

28. Ikemoto A., Ohishi M., Sato Y. et al. Reversibility of n-3 fatty acid deficiency-induced alterations of learning behavior in the rat: level of n-6 fatty acids as another critical factor // J. Lipid. Res. — 2001; 42 (10): 1655–1663.

29. Rader R., McCauley L., Callen E. C. Current strategies in the diagnosis and treatment of childhood attention-deficit/hyperactivity disorder // Am. Fam. Physician. — 2009; 79 (8): 657–665.

30. Van Cleave J., Leslie L. K. Approaching ADHD as a chronic condition: implications for long-term adherence // J. Psychosoc. Nurs. Ment. Health Serv. — 2008; 46 (8): 28–37.

31. Журба Л. Т., Мастюкова Е. М. Минимальная мозговая дисфункция у детей. — М.: ВИНИМИ, 1980. — 92 c.

32. Заваденко Н. Н., Суворинова Н. Ю., Румянцева М. В. Гипер активность с дефицитом внимания: факторы риска, возрастная динамика, особенности диагностики // Дефектология. — 2003; 6: 6–11.

33. Торшин И. Ю., Громова О. А., Скоромец А. Н., Егорова Е. Ю. Систематический анализ биохимических нарушений при синдроме дефицита внимания с гиперактивностью: нутрициологическая концепция // Педиатрия. — 2010; 12.

34. Linnet K. M., Dalsgaard S., Obel C. et al. Maternal lifestyle factors in pregnancy risk of attention deficit hyperactivity disorder and associated behaviors: review of the current evidence // Am. J. Psychiatry. — 2003; 160 (6): 1028–1040.

35. Braun J. M., Kahn R. S., Froehlich T. et al. Exposures to environmental toxicants and attention deficit hyperactivity disorder in U. S. children // Environ. Health Perspect. — 2006; 114 (12): 1904–1909.

36. McCann D., Barrett A., Cooper A. et al. Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial // Lancet. — 2007; 370 (9598): 1560–1567.

37. Kuehn B. M. Increased risk of ADHD associated with early exposure to pesticides, PCBs // JAMA. — 2010; 304 (1): 27–28.

38. Germano M., Meleleo D., Montorfano G. et al. Plasma, red blood cells phospholipids and clinical evaluation after long chain omega-3 supplementation in children with attention deficit hyperactivity disorder (ADHD) // Nutr. Neurosci. — 2007; 10 (1–2): 1–9.

39. Liu P. J., Ma F. Polyunsaturated fatty acids and attention-deficit hyperactivity disorder // Zhongguo Dang Dai Er Ke Za Zhi. — 2009; 11 (9): 783–785.

40. Schuchardt J. P., Huss M., Stauss-Grabo M., Hahn A. Significance of long-chain polyunsaturated fatty acids (PUFAs) for the development and behaviour of children // Eur. J. Pediatr. — 2010; 169 (2): 149–164.

41. Lavialle M., Denis I., Guesnet P., Vancassel S. Involvement of omega-3 fatty acids in emotional responses and hyperactive symptoms // J. Nutr. Biochem. — 2010; 21 (10): 899–905.

42. Lavialle M., Champeil-Potokar G., Alessandri J. M. et al. An (n-3) polyunsaturated fatty acid-deficient diet disturbs daily locomotor activity, melatonin rhythm, and striatal dopamine in Syrian hamsters // J. Nutr. — 2008; 138 (9): 1719–1724.

43. McNamara R. K., Able J., Jandacek R. et al. Docosahexaenoic acid supplementation increases prefrontal cortex activation during sustained attention in healthy boys: a placebo-controlled, doseranging, functional magnetic resonance imaging study // Am. J. Clin. Nutr. — 2010; 91 (4): 1060–1067.

44. Colter A. L., Cutler C., Meckling K. A. Fatty acid status and behavioural symptoms of attention deficit hyperactivity disorder in adolescents: a case-control study // Nutr. J. — 2008; 7 (1): 8–10.

45. Young G. S., Maharaj N. J., Conquer J. A. Blood phospholipid fatty acid analysis of adults with and without attention deficit/hyperactivity disorder // Lipids. — 2004; 39 (2): 117–123.

46. Spahis S., Vanasse M., Belanger S. A. et al. Lipid profile, fatty acid composition and proand anti-oxidant status in pediatric patients with attention-deficit/hyperactivity disorder // Prostaglandins Leukot. Essent. Fatty. Acids. — 2008; 79 (1–2): 47–53.

47. Antalis C. J., Stevens L.J., Campbell M. et al. Omega-3 fatty acid status in attention-deficit/hyperactivity disorder // Prostaglandins Leukot. Essent. Fatty. Acids. — 2006; 75 (4–5): 299–308.

48. Кузенкова Л. М., Балканская С. В., Увакина Е. В. Место микронутриентов и полиненасыщенных жирных кислот в профилактике когнитивных нарушений у детей с синдромом дефицита внимания и гиперактивности. — М., 2010.


Для цитирования:


Громова О.А., Торшин И.Ю., Егорова Е.Ю. ОМЕГА-3 ПОЛИНЕНАСЫЩЕННЫЕ ЖИРНЫЕ КИСЛОТЫ И КОГНИТИВНОЕ РАЗВИТИЕ ДЕТЕЙ. Вопросы современной педиатрии. 2011;10(1):66-72.

For citation:


Gromova O.A., Torshin I.Y., Yegorova Y.Y. OMEGA-3 POLYUNSATURATED FATTY ACIDS AND COGNITIVE DEVELOPMENT OF CHILDREN. Current Pediatrics. 2011;10(1):66-72. (In Russ.)

Просмотров: 587


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)