Preview

Вопросы современной педиатрии

Расширенный поиск

Формирование кишечного микробиоценоза: состояние проблемы

Аннотация

Первый год жизни ребенка — наиболее ответственный и напряженный этап в формировании стабильного кишечного микробиоценоза. Среди основных факторов, обеспечивающих стабильность, рассматривают первичную колонизацию, толерантность, барьерную функцию эпителия, основные защитные системы ЖКТ, грудное молоко, пробиотики. Для направленного создания или восстановления нарушенного микробиоценоза врач-педиатр может использовать различные технологии в управлении микробными популяциями: естественное вскармливание, при недостатке или отсутствии грудного молока — адаптированные молочные смеси с пробиотиками. Благоприятные эффекты пробиотиков являются штамм-специфичными. Рассматривается подробное научное досье штамма Lactobacillus GG (АТСС 53103, LGG), который входит в состав кисломолочных продуктов «ТЁМА» для детей с 6-месячного возраста.
Ключевые слова: дети, колонизация, кишечная флора, микробиоценоз, грудное молоко, пробиотические бактерии, продукты питания.

Об авторе

Н.И. Урсова
Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского


Список литературы

1. Фролова Н.А. Особенности формирования микробиоценоза детей раннего возраста в зависимости от микробного пейзажа кишечника матери. Автореф. дис. …канд. мед. наук. Смоленск. 2001. 23 с.

2. Володин Н.Н. Перинатальная медицина: проблемы, пути и условия их решения. Педиатрия. 2004; 5: 18–23.

3. Гусейнова Н.А. Пробиотикотерапия, применяемая при кишечной дисфункции новорожденных, рожденных с помощью кесарева сечения. Альманах клинической медицины. 2010; 23: 72–75.

4. Benno Y., Sawada K., Mitsuoka T. The intestinal microflora of infants: Composition of flora in breastfed and bottle fed infants. Microbiol. Immunol. 1984; 28: 975–986.

5. Mackie R., Sghir A., Gaskins H.R. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutrit. 1999; 69: 1035–1045.

6. Heavey P.M., Rowland I.R. The gut microflora of the developing infant: microbiology and metabolism. Microbial. Ecol. Health Dis. 1999; 11: 75–83.

7. Tannock G.W., Fuller R., Smith SL., Hall M.A. Plasmid profiling of members of the family enterobacteriaceae, lactobacilli, and bifidobacteria to study the transmission of bacteria from mother to infant. J. Clin. Microbiol. 1990; 28: 1225–1228.

8. Macfarlan S., Cummings G.H., Macfarlan G.T. Bacterial colonization of surfaces in the large intestine. In: Colonic microflora, nutrition and health. Eds. G.R. Gibson, M. Roberfroid. L.: Chapman & Hall. 1999. P. 71–87.

9. Van der Waaij D. Colonization resistance of digestive tract. Japan.1999. P. 76–81.

10. Adlerberth I., Cerqueti M., Poilane I. et al. Mechanisms of colonization and colonization resistance of the digestive tract. Microbial Ecol. Health Dis. 2000; 1: 223–239.

11. Fons M., Gomez A., Karjalainen T. Mechanisms of colonization and colonization resistance of the digestive tract. Microbial Ecol. Health Dis. 2000; 2: 240–246.

12. Thomas V., Rochet V., Boureau H. et al. Molecular characterization and spatial analysis of a simplified microbiota displaying colonization resistance against Clostridium difficile. Microbiаl. Ecol. Health Dis. 2002; 14: 203–210.

13. Bezirtzoglou E., Romond C. Occurrence of Bifidobacterium in the feces of newborns delivered by cesarean section. Biol. Neonate. 1990; 58: 247–251.

14. Grönlund M.M., Lehtonen O.P., Eerola E., Kero P. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J. Pediat. Gastroenterol. Nutr. 1999; 28: 19–25.

15. Harmsen H.J., Wildeboer–Veloo A.C., Raangs G.G. et al. Analysis of intestinal flora development in breastfed and formula fed infants by molecular identification and detection methods. J. Pediatr. Gastroenterol. Nutr. 2000; 30: 61–67.

16. Favier C., Vaughan E., de Vos W., Akkermans A. Molecular monitoring of succession of bacterial communities in human neonate. Appl. Environ. Microbiol. 2002; 68: 219–226.

17. Benno Y., Mitsuoka N. Development of intestinal microflora in humans and animals. Bifidobacteria Microflora. 1986; 5: 13–25.

18. Sakata H., Yoshioka H., Fujita K. Development of the intestinal flora in very low birth weight infants compared to normal full-term newborns. Eur. J. Pediatr. 1985; 144: 186–190.

19. Bruck W.M., Kelleher S.L., Gibson G.R. rRNA probes used to quantify the effects of glycomacropeptides and ά–lactalbumin supplementation on the predominant groups of intestinal bacteria of infant rhesus monkeys challenged with enteropathogenic Escherichia coli. J. Pediatr. Gastroenter. Nutr. 2003; 37: 273–280.

20. Rotimi V.O., Duerden B.I. The development of the bacterial flora in normal neonates. J. Med. Microbiol. 1981; 14 (1): 51–62.

21. Gnoth M.J., Kunz C., Kinne–Saffran E., Rudloff S. Human milk oligosaccharides are minimally digested in vitro. J. Nutr. 2000; 130 (12): 3014–3020.

22. Dai D., Walker W.A. Protective nutrients and bacterial colonization in the immature human gut. Advances Pediatrics. 1999; 46: 353–382.

23. Gibson G.R., Beatty E.R., Cummings J.H. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology. 1995; 108 (4): 975–982.

24. Roberfroid M.B. Prebiotics and synbiotics: concepts and nutritional properties. Br. J. Nutr. 1998; 80 (4): 197–202.

25. Stark P.L., Lee A. The microbial ecology of the large bowel of breast-fed and formula-fed infants during the first year of life. J. Med. Microbiol. 1982; 15 (2): 189–203.

26. Collado M.C., Delgado S., Maldonado A. et al. Assessement of the bacterial diversity of breast milk of healthy woman by quantitative realtime PCR. Appl. Microbiol. 2009; 48 (5): 523–528.

27. Martin R., Jimenez E., Heilig H. et al. Isolation of bifidobacteria from breast milk and assessement of the bifidobacterial population by PCR denaturing gradient gel electrophoresis and quantitative realtime PCR. Appl. Environ. Microbiol. 2009; 75 (4): 965–969.

28. Martin R., Heilig G.H., Heilig J., Zoetendal E.G. Diversity of the Lactobacillus group in breast milk and vagina of healthy women and potential role in the colonization of the infant. J. Appl. Microbiol. 2007; 103: 2638–2644.

29. Tarcan A., Güraken F., Tiker F., Özbek N. Influence of feeding formula and breast milk fortifier on lymphocyte subsets in very low birth weight premature newborns. Biol. Neonate. 2004; 86: 22–28.

30. Hawkes J.S., Neumann M.A., Gibson R.A. The effects of breast feeding on lymphocyte subpopulations in healthy term infants at 6 months of age. Pediatr. Res. 1999; 45: 648–651.

31. Rinne M., Kalliomaki M., Salminen S., Isolaure E. Probiotic intervention in the first months of life: short term effects on gastrointestinal symptoms and long term effects on gut microbiota. J. Pediatr. Gastroenterol. Nutr. 2006; 43: 200–205.

32. Smahi A., Courtois G., Rabia S.H. et al. The NF–kB signaling pathway in human diseases: from incontinentia pigmenti to ectodermal dysplasias and immune-deficiency syndromes. Hum. Mol. Genet. 2002; 11: 2371–2375.

33. Ogura Y., Bonen DK., Inohara N. et al. A frameshift mutation in Nod2 associated with susceptibility to Crohn's disease. Nature. 2001; 411: 603–606.

34. Girardin S.E., Boneca I.G., Viala J. et al. Nod2 is general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 2003; 278: 8869–8872.

35. Hooper L.V., Gordon J.I. Commensal host-bacterial relationships in the gut. Science. 2001; 292: 1115–1118.

36. Sudo N., Sawamura S., Tanaka K. et al. The requirement of intestinal bacterial flora for the development of an IgE oroduction system susceptible to oral tolerance induction. J. Immunol. 1997; 159: 1739–1745.

37. Hooper L.V., Wong M.H., Thelin A. et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science. 2001; 291: 881–884.

38. Stappenbeck T.S., Hooper L.V., Gordon J.I. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc. Natl. AcadSci USA. 2002; 99: 15451–15455.

39. Freitas M., Axelsson L.G., Cayuela C. et al. Microbial host interactions specifically control the glycosylation pattern in intestinal mouse mucosa. Histochem. Cell Biol. 2002; 118: 149–161.

40. Heilig H.G., Zoetendal E.G., Vaughan E.E. et al. Molecular diversity of Lactobacillus spp. and other lactis acid bacteria in human intestine as determined by specific amplification of 16S ribosomal DNA. Appl. Environ. Microbiol. 2002; 68: 114–123.

41. Husby S.T., Mestecky J., Moldoveanu Z., Elson C.O. Induction of oral tolerance. In: Intestinal Immunology and food allergy ed. А. de Weck, Н. Sampson. NNW Series (34). New York: Raven Press. 1995. Р. 169–177.

42. Spiekermann G.M., Walker W.A. Oral tolerance and its role in clinical disease. J. Pediatr. Gastroenterol. Nutr. 2001; 32 (3): 237–255.

43. Kemp A., Björksten B. Immune deviation and hygiene hypothesis: A review of the epidemiological evidence. Pediatr. Allergy Immunol. 2003; 14 (3): 74–80.

44. Shimosato T., Kimura T., Tohno M. et al. Strong immunostimulatory activity of AT-oligodeoxynucleotide requires a six-base loop with a self stabilized 5' C…G–3'stem structure. Cell Microbiol. 2006; 8 (3): 485–495.

45. Sudo N., Aiba Y., Oyama N. et al. Dietary nucleic acid and intestinal microbiota synergistically promote a shift in the Th1/Th2 balance towards Th1 skewed immunity. Int. Arch. Allergy Immunol. 2004; 135 (2): 132–135.

46. Walter J. Ecological role of lactobacilli in the gastrointestinal tract: implication for fundamental and biomedical research. Appl. Envir. Microbiol. 2008; 74 (16): 4985–4996.

47. Rakoff–Nahoum S., Paglino J., Eslami–Varzaneh F. еt al. Recognition of commental microflora by Toll like Receptors is reguired for intestinal homeostasis. Cell. 2004; 118: 229–244.

48. Medzhitov R. Toll like receptors and innate immunity. Nat. Rev. Immunol. 2001; 1 (2): 134–145.

49. Лиходед В.Г., Бондаренко В.М. Антиэндотоксиновый иммунитет в регуляции численности микрофлоры кишечника. М.: Медицина. 2007. 216 с.

50. Broad A., Jones D.E., Kirby J.A. Toll like receptor (TLR) response tolerance: a key physiological «damage limitation» effect and an important potential opportunity for therapy. Curr. Med. Chem. 2006; 13 (21): 2487–2502.

51. Abrea M.T., Fucata M., Arditi M. TLR signaling in the gut in health and disease. J. Immunol. 2005: 174 (8): 4453–4460.

52. Vinderola G., Matar C., Perdigon G. Role of intestinal epithelial cells in immune effects mediated by gram positive probiotic bacteria: involvement of toll like receptors. Clin. Diagn. Lab. Immunol. 2005; 12 (9): 1075–1084.

53. Isolauri E., Juntunen M., Rautanen T. et al. A human Lactobacillus strain (Lactobacillus casei SP strain GG) promotes recovery from acute diarrhea in children. Pediatrics. 1991; 88: 90–97.

54. Isolauri E., Joensuu J., Suomalainen H. еt al. Improved immunogenicity of oral D x RRV reassortant rotavirus vaccine by Lactobacillus casei GG. Vaccine. 1995; 13: 310–312.

55. Johnson–Henry K.C., Donato K.A., Shen–Tu G. et al. Lactobacillus rhamnosus strain GG prevents enterohemoffhagis Escherichia coli 0157: H7 induced changes in epithelial barrier function. Infect. Immun. 2008; 76: 1340–1348.

56. Haahtela T., Korpela R., Savilahti E., Vaarala O. Probiotics in infancy induce protective immune profiles that are characteristic for chronic low grade inflammation. Clin. Exp. Allergy. 2008; 38: 611–618.

57. Bloise E., Torrcelli M., Novembri R. et al. Heat-killed Lactobacillus rhamnosus GG modulates urocortin and cytokine release in primary trophoblast cell. Placenta. 2010; 31: 867–872.

58. Oksaharju A., Kankainen M., Kekkonen R.A. et al. Probiotic Lactobacillus rhamnosus downregulates FCER1 and HRH4 expression in human mast cell. J. Gastroenterol. 2011; 17: 750–759.

59. Anderson J.M. Molecular structure of tight jinctions and their role in epithelial transport. News Physiol. Sci. 2001; 16: 126–130.

60. Ceponis P.J., Botelho F., Richards C.D. Interleukins 4 and 13 increase intestinal epithelial permeability by a phosphatidylinositol pathway. Lack of evidence for STAT 6 involvement. J. Biol. Chem. 2005; 275: 29132–29137.

61. Madsen K.L., Lewis S.A., Tavernini M.M. et al. Interleukin 10 prevents cytokine-induced disruption of T84 monolayer barrier integrity and limits chloride secretion. Gastroenterology. 1997; 113: 151–159.

62. Han X., Fink M.P., Delude R.L. et al. Proinflammatory cytokines cause NO-dependent and independent changes in expression and localization of tight junction proteins in intestinal epithelial cells. Shock. 2003; 19: 229–237.

63. Simon G.L, Gorbach S.L. Intestinal flora in health and disease. Gastroenterology. 1984; 86: 174–193.

64. Moore W.E, Holdeman L.V. Human fecal flora: the normal flora of 20 Japanese–Hawaiians. Appl. Environ. Microbiol. 1974; 27: 961–979.

65. Cook G.C. Hypochlorhydria and vulnerability to intestinal infection. Eur. J. Gastroenterol. Hepatol. 1994; 6: 693–695.

66. Marteau P., Minekus M., Havenaar R. et al. Survival of lactic acid bacteria in a dynamic model of the stomach and small intestine: validation and the effects of bile. J. Dairy Sci. 1997; 80: 1031–1037.

67. Drouault S., Corthier G., Ehrlich SD. et al. Survival, physiology, and lysis of Lactococcus lactis in the digestive tract. Appl. Environ. Microbiol. 1999; 65: 4881–4886.

68. Железная Л.А. Структура и функция гликопротеинов слизи (муцинов). Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 1998; 8 (1): 30–37.

69. Mack D.R., Ahrne S., Hude L. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut. 2003; 52: 827–833.

70. Clark J.A., Coopersmith C.M. Intestinal cross talk ― a new paradigm for understanding the gut as the «motor» of critical illness. Shock. 2007; 28 (4): 384–393.

71. Pasquier M.C., Vatier J. Mucus gastro-intestinal: une barriere protectrice complexe. Premiere partie. Structure et proprietes physicochimiques. Gastroenterol. Clin. Biol. 1990; 14: 352–358.

72. Khan J., Iiboshi Y., Cui L. Alanyl-glutamine-supplemented parenteral nutrition increases luminal mucus gel and decreases permeability in the rat small intestine. J. Parenter. Enteral. Nutr. 1999; 23: 24–31.

73. Szajewska H., Mrukowicz J. Probiotics in the treatment and prevention of acute infectious diarrhea in infants and children: a systematic review of published randomized, double blind, placebo controlled trials. J. Pediatr. Gastroenterol. Nutr. 2001; 33: 17–25.

74. Guarner F., Schaafsma G.J. Probiotics. J. Food Microbiol. 1998; 39: 237–238.

75. Абрамова Т.В., Георгиева О.В., Гуторова Т.В. Новый вид обогащенного биойогурта в питании детей раннего возраста. Вопросы практической педиатрии. 2011; 6 (3): 97–98.


Для цитирования:


Урсова Н. Формирование кишечного микробиоценоза: состояние проблемы. Вопросы современной педиатрии. 2011;10(4):62–69.

For citation:


Ursova N. FORMATION OF INTESTINAL MICROBIOCENOSIS: THE STATE OF A PROBLEM. Current Pediatrics. 2011;10(4):62–69.

Просмотров: 179


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)