Preview

Вопросы современной педиатрии

Расширенный поиск

НЕЙРОГЕНЕТИЧЕСКИЕ АСПЕКТЫ ГИПОКCИЧЕСКИ-ИШЕМИЧЕСКИХ ПЕРИНАТАЛЬНЫХ ПОРАЖЕНИЙ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

https://doi.org/10.15690/vsp.v15i5.1618

Полный текст:

Аннотация

Нейрогенетика представляет собой бурно развивающуюся молодую науку, которая вносит существенный вклад в общепринятую концепцию развития мозга в норме и патологии. Благодаря этому ученые не только могут расставить новые акценты в традиционные представления о происхождении заболеваний, но и полностью пересмотреть свой взгляд на проблему развития патологии. Так появились новые данные о нейрогенетике перинатальных поражений центральной нервной системы (ЦНС). Генетические факторы в разной степени влияют на гипоксически-ишемические перинатальные поражения ЦНС, из них наиболее изученным остается детерминация недоношенности. Тем не менее появляется все больше данных о значимых эпигенетических механизмах регуляции нейроэкспрессии, вызываемых гипоксией, нарушением питания беременной, стрессами, курением, приемом алкоголя, наркотиков, которые либо напрямую повреждают развивающийся мозг, либо формируют мозговой фенотип, чувствительный к перинатальному поражению ЦНС. Новые данные заставляют менять подходы к профилактике перинатальных поражений ЦНС.

Об авторах

Г. А. Каркашадзе
Научный центр здоровья детей
Россия

Каркашадзе Георгий Арчилович - кандидат медицинских наук, заведующий отделением когнитивной педиатрии НИИ педиатрии НЦЗД.

119991, Москва, Ломоносовский проспект, д. 2, стр. 1,  тел.: +7 (495) 967-14-20,  e-mail: karkga@mail.ru


К. В. Савостьянов
Научный центр здоровья детей
Россия


С. Г. Макарова
Научный центр здоровья детей; Первый Московский государственный медицинский университет имени И.М. Сеченова
Россия


Л. С. Намазова-Баранова
Научный центр здоровья детей; Первый Московский государственный медицинский университет имени И.М. Сеченова; Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
Россия


O. И. Маслова
Научный центр здоровья детей
Россия


Г. В. Яцык
Научный центр здоровья детей
Россия


Список литературы

1. Баранов А.А. Состояние здоровья детей в Российской Федерации как фактор национальной безопасности. Пути решения существующих проблем // Справочник педиатра. — 2006. — № 3 — С. 9–14. [Baranov AA. Sostoyanie zdorov’ya detei v Rossiiskoi Federatsii kak faktor natsional’noi bezopasnosti. Puti resheniya sushchestvuyushchikh problem. Spravochnik pediatra. 2006;(3):9–14. (In Russ).]

2. Баранов А.А., Маслова O.И., Намазова-Баранова Л.С. Онтогенез нейрокогнитивного развития детей и подростков // Вестник Российской академии медицинских наук. — 2012. — Т. 67. — № 8 — С. 26–33. [Baranov AA; Maslova OI; Namazova-Baranova LS. Ontogenesis of neurocognitive development of children and adolescents. Vestn Ross Akad Med Nauk. 2012;67(8):26–33. (In Russ).] doi: 10.15690/vramn.v67i8.346.

3. С овременные медико-социальные проблемы неонатологии / Под ред. А.А. Баранова; Г.В. Яцык. — М.: ПедиатрЪ; 2015. — С. 225–301. [Sovremennye mediko-sotsial’nye problemy neonatologii. Ed by A.A. Baranov; G.V. Yatsyk. Moscow: Pediatr; 2015. p. 225–301. (In Russ).]

4. Р уководство по педиатрии. Неонатология / Под ред. Г.В. Яцык; Г.А. Самсыгиной. — М.: Династия; 2006. — 464 с. [Rukovodstvo po pediatrii. Neonatologiya. Ed by G.V. Yatsyk; G.A. Samsygina. Moscow: Dinastiya; 2006. 464 p. (In Russ).]

5. Birney E; Soranzo N. Human genomics: The end of the start for population sequencing. Nature. 2015;526(7571):52–53. doi: 10.1038/526052a.

6. Lodato MA; Woodworth MB; Lee S; et al. Somatic mutation in single human neurons tracks developmental and transcriptional history. Science. 2015;350(6256) :94–98. doi: 10.1126/science.aab1785.

7. Faraone SV. Advances in the genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2014;76(8):599–600. doi: 10.1016/j.biopsych.2014.07.016.

8. Hoogman M; Guadalupe T; Zwiers MP; et al. Assessing the effects of common variation in the FOXP2 gene on human brain structure. Front Hum Neurosci. 2014;8:473. doi: 10.3389/fnhum.2014.00473.

9. Auton A; Brooks LD; Durbin RM; et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74. doi: 10.1038/nature15393.

10. Jolma A; Kivioja T; Toivonen J; et al. Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. Genome Res. 2010;20(6): 861–873. doi: 10.1101/gr.100552.109.

11. Davies G; Armstrong N; Bis JC; et al. Genetic contributions to variation in general cognitive function: a meta-analysis of genome-wide association studies in the CHARGE consortium (N = 53 949). Mol Psychiatry. 2015;20(2):183–192. doi: 10.1038/mp.2014.188.

12. Thompson PM; Andreassen OA; Arias-Vasquez A; et al. ENIGMA and the individual: predicting factors that affect the brain in 35 countries worldwide. Neuroimage. 2015:1053-8119(15)01081-2. doi: 10.1016/j.neuroimage.2015.11.057.

13. Krapohl E; Rimfeld K; Shakeshaft NG; et al. The high heritability of educational achievement reflects many genetically influenced traits; not just intelligence. Proc Natl Acad Sci U S A. 2014;111(42):15273–15278. doi: 10.1073/pnas.1408777111.

14. Beaver KM; Schwartz JA; Al-Ghamdi MS; et al. A closer look at the role of parenting-related influences on verbal intelligence over the life course: Results from an adoption-based research design. Intelligence. 2014;46:179–187. doi: 10.1016/j.intell.2014.06.002.

15. Biggio JR; Anderson S. Spontaneous preterm birth in multiples. Clin Obstet Gynecol. 2015;58(3):654–667. doi: 10.1097/grf.0000000000000120.

16. Parets SE; Knight AK; Smith AK. Insights into genetic suscepti-bility in the etiology of spontaneous preterm birth. Appl Clin Genet. 2015;8:283–290. doi: 10.2147/tacg.s58612.

17. Goldenberg RL; Culhane JF; Iams JD; Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84. doi: 10.1016/s0140-6736(08)60074-4.

18. Ward K; Argyle V; Meade M; Nelson L. The heritability of preterm delivery. Obstet Gynecol. 2005;106(6):1235–1239. doi: 10.1097/01.aog.0000189091.35982.85.

19. Haataja R; Karjalainen MK; Luukkonen A; et al. Mapping a new spontaneous preterm birth susceptibility gene; IGF1R; using linkage; haplotype sharing; and association analysis. PLoS Genet. 2011;7(2):e1001293. doi: 10.1371/journal.pgen.1001293.

20. Treloar SA; Macones GA; Mitchell LE; Martin NG. Genetic influences on premature parturition in an Australian twin sample. Twin Res. 2000;3(2):80–82. doi: 10.1375/twin.3.2.80.

21. Committee on Practice Bulletins-Obstetrics; TACoO; Gynec ologists. Practice bulletin no 130: prediction and prevention of preterm birth. Obstet Gynecol. 2012;120(4):964–973. doi: 10.1097/aog.0b013e3182723b1b.

22. Wu W; Witherspoon DJ; Fraser A; et al. The heritability of gestational age in a two-million member cohort: implications for spontaneous preterm birth. Hum Genet. 2015;134(7):803–808. doi: 10.1007/s00439-015-1558-1.

23. Wilcox AJ; Skjaerven R; Lie RT. Familial patterns of preterm delivery: maternal and fetal contributions. Am J Epidemiol. 2008;167(4):474–479. doi: 10.1093/aje/kwm319.

24. Plunkett J; Feitosa MF; Trusgnich M; et al. Mother’s genome or maternally-inherited genes acting in the fetus influence gestational age in familial preterm birth. Hum Hered. 2009;68(3):209–219. doi: 10.1159/000224641.

25. Romero R; Velez Edwards DR; Kusanovic JP; et al. Identification of fetal and maternal single nucleotide polymorphisms in candidate genes that predispose to spontaneous preterm labor with intact membranes. Am J Obstet Gynecol. 2010;202(5):431.e431–e434. doi: 10.1016/j.ajog.2010.03.026.

26. Romero R; Friel LA; Velez Edwards DR; et al. A genetic association study of maternal and fetal candidate genes that predispose to preterm prelabor rupture of membranes (PROM). Am J Obstet Gynecol. 2010;203(4):361.e1–361.e30. doi: 10.1016/j.ajog.2010.05.026.

27. Wolf J; Rose-John S; Garbers C. Interleukin-6 and its receptors: a highly regulated and dynamic system. Cytokine. 2014;70(1):11–20. doi: 10.1016/j.cyto.2014.05.024.

28. Gigante B; Strawbridge RJ; Velasquez IM; et al. Analysis of the role of interleukin 6 receptor haplotypes in the regulation of circulat-ing levels of inflammatory biomarkers and risk of coronary heart disease. PloS One. 2015;10(3):e0119980. doi: 10.1371/journal.pone.0119980.

29. Dolan SM; Hollegaard MV; Merialdi M; et al. Synopsis of preterm birth genetic association studies: the preterm birth genetics knowl edge base (PTBGene). Public Health Genomics. 2010;13(7–8):514–523. doi: 10.1159/000294202.

30. Pereza N; Plesa I; Peterlin A; et al. Functional polymorphisms of matrix metalloproteinases 1 and 9 genes in women with spontaneous preterm birth. Dis Markers. 2014;2014:171036. doi: 10.1155/2014/171036.

31. Wang Y; Zhang XA; Yang X; et al. A MCP-1 promoter polymorphism at G-2518A is associated with spontaneous preterm birth. Mol Genet Genomics. 2015;290(1):289–296. doi: 10.1007/s00438-014-0921-6.

32. Karjalainen MK; Huusko JM; Ulvila J; et al. A potential novel spontaneous preterm birth gene; AR; identified by linkage and association analysis of X chromosomal markers. PLoS One. 2012;7(12):e51378. doi: 10.1371/journal.pone.0051378.

33. Zhang H; Baldwin DA; Bukowski RK; et al. A genome-wide association study of early spontaneous preterm delivery. Genet Epidemiol. 2015;39(3):217–226. doi: 10.1002/gepi.21887.

34. Uzun A; Dewan AT; Istrail S; Padbury JF. Pathway-based genetic analysis of preterm birth. Genomics. 2013;101(3):163–170. doi: 10.1016/j.ygeno.2012.12.005.

35. Manuck TA; Lai Y; Meis PJ; et al. Admixture mapping to identify spontaneous preterm birth susceptibility loci in African Americans. Obstet Gynecol. 2011;117(5):1078–1084. doi: 10.1097/aog.0b013e318214e67f.

36. Wu W; Clark EAS; Manuck TA; et al. A Genome-Wide Association Study of spontaneous preterm birth in a European population. F1000Res. 2013;2:255. doi: 10.12688/f1000research.2-255.v1.

37. Menon R; Conneely KN; Smith AK. DNA methylation: an epigenetic risk factor in preterm birth. Reprod Sci. 2012;19(1):6–13. doi: 10.1177/1933719111424446.

38. Yao Y; Robinson AM; Zucchi FC; et al. Ancestral exposure to stress epigenetically programs preterm birth risk and adverse maternal and newborn outcomes. BMC Med. 2014;12:121. doi: 10.1186/s12916-014-0121-6.

39. Parets SE; Conneely KN; Kilaru V; et al. DNA methylation pro-vides insight into intergenerational risk for preterm birth in African Americans. Epigenetics. 2015;10(9):784–792. doi: 10.1080/15592294.2015.1062964.

40. DiGiulio DB. Diversity of microbes in amniotic fluid. Semin Fetal Neonatal Med. 2012;17(1):2–11. doi: 10.1016/j.siny.2011.10.001.

41. Mendz GL; Kaakoush NO; Quinlivan JA. Bacterial aetiological agents of intra-amniotic infections and preterm birth in pregnant women. Front Cell Infect Microbiol. 2013;3:58. doi: 10.3389/fcimb.2013.00058.

42. Payne MS; Bayatibojakhi S. Exploring preterm birth as a poly-microbial disease: an overview of the uterine microbiome. Front Immunol. 2014;5:595. doi: 10.3389/fimmu.2014.00595.

43. Ma Q; Zhang L. Epigenetic programming of hypoxic-ischemic encephalopathy in response to fetal hypoxia. Prog Neurobiol. 2015;124:28–48. doi: 10.1016/j.pneurobio.2014.11.001.

44. Barker DJ; Osmond C. Low birth weight and hypertension. BMJ. 1988;297(6641):134–135. doi: 10.1136/bmj.297.6641.134-b.

45. Hales CN; Barker DJ. The thrifty phenotype hypothesis. Br Med Bull. 2001;60(1):5–20. doi: 10.1093/bmb/60.1.5.

46. Harris A; Seckl J. Glucocorticoids; prenatal stress and the programming of disease. Horm Behav. 2011;59(3):279–289. doi: 10.1016/j.yhbeh.2010.06.007.

47. Kim DR; Bale TL; Epperson CN. Prenatal programming of mental illness: current understanding of relationship and mechanisms. Curr Psychiatry Rep. 2015;17(2):5. doi: 10.1007/s11920-014-0546-9.

48. Li Y; Gonzalez P; Zhang L. Fetal stress and programming of hypoxic/ischemic-sensitive phenotype in the neonatal brain: mechanisms and possible interventions. Prog Neurobiol. 2012;98(2):145–165. doi: 10.1016/j.pneurobio.2012.05.010.

49. Vazquez-Valls E; Flores-Soto ME; Chaparro-Huerta V; et al. HIF-1alpha expression in the hippocampus and peripheral macrophages after glutamate-induced excitotoxicity. J Neuroimmunol. 2011;238(1–2):12–18. doi: 10.1016/j.jneuroim.2011.06.001.

50. Wood IS; de Heredia FP; Wang B; Trayhurn P. Cellular hypoxia and adipose tissue dysfunction in obesity. Proc Nutr Soc. 2009;68(4):370–377. doi: 10.1017/s0029665109990206.

51. Milosevic J; Maisel M; Wegner F; et al. Lack of hypoxia-induc ible factor-1 alpha impairs midbrain neural precursor cells involving vascular endothelial growth factor signaling. J Neurosci. 2007;27(2):412–421. doi: 10.1523/jneurosci.2482-06.2007.

52. Trollmann R; Rehrauer H; Schneider C; et al. Late-gestational systemic hypoxia leads to a similar early gene response in mouse placenta and developing brain. Am J Physiol Regul Integr Comp Physiol. 2010;299(6):R1489–1499. doi: 10.1152/ajpregu.00697.2009.

53. Dyrvig M; Hansen HH; Christiansen SH; et al. Epigenetic regulation of Arc and c-Fos in the hippocampus after acute electroconvulsive stimulation in the rat. Brain Res Bull. 2012;88(5):507–513. doi: 10.1016/j.brainresbull.2012.05.004.

54. Gonzalez-Rodriguez PJ; Xiong F; Li Y; et al. Fetal hypoxia increases vulnerability of hypoxic-ischemic brain injury in neonatal rats: Role of glucocorticoid receptors. Neurobiol Dis. 2014;65:172–179. doi: 10.1016/j.nbd.2014.01.020.

55. Wang X; Meng FS; Liu ZY; et al. Gestational hypoxia induces sex-differential methylation of Crhr1 linked to anxiety-like behavior. Mol Neurobiol. 2013;48(3):544–555. doi: 10.1007/s12035-013-8444-4.

56. Watson JA; Watson CJ; McCann A; Baugh J. Epigenetics; the epicenter of the hypoxic response. Epigenetics. 2010;5(4):293–296. doi: 10.4161/epi.5.4.11684.

57. Koslowski M; Luxemburger U; Tureci O; Sahin U. Tumor-associated CpG demethylation augments hypoxia-induced effects by positive autoregulation of HIF-1alpha. Oncogene. 2011;30(7):876–882. doi: 10.1038/onc.2010.481.

58. Kenneth NS; Mudie S; van Uden P; Rocha S. SWI/SNF regulates the cellular response to hypoxia. J Biol Chem. 2009;284(7):4123–4131. doi: 10.1074/jbc.m808491200.

59. Crosby ME; Kulshreshtha R; Ivan M; Glazer PM. MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res. 2009;69:1221–1229. doi: 10.1158/0008-5472.can-08-2516.

60. Garcia-Bonilla L; Benakis C; Moore J; et al. Immune mechanisms in cerebral ischemic tolerance. Front Neurosci. 2014;8:44. doi: 10.3389/fnins.2014.00044.

61. Wang H; Flach H; Onizawa M; et al. Negative regulation of Hif1a expression and TH17 differentiation by the hypoxia-regulated microRNA miR-210. Nat Immunol. 2014;15(4):393–401. doi: 10.1038/ni.2846.

62. Wenger RH; Kvietikova I; Rolfs A; et al. Oxygen-regulated erythropoietin gene expression is dependent on a CpG methylationfree hypoxia-inducible factor-1 DNA-binding site. Eur J Biochem. 1998;253(3):771–777. doi: 10.1046/j.1432-1327.1998.2530771.x.

63. Ishida M; Sunamura M; Furukawa T; et al. Elucidation of the relationship of BNIP3 expression to gemcitabine chemosensitivity and prognosis. World J Gastroenterol. 2007;13(34):4593–4597. doi: 10.3748/wjg.v13.i34.4593.

64. Bacon AL; Fox S; Turley H; Harris AL. Selective silencing of the hypoxia-inducible factor 1 target gene BNIP3 by histone deacetylation and methylation in colorectal cancer. Oncogene. 2007;26(1):132–141. doi: 10.1038/sj.onc.1209761.

65. Mutoh T; Sanosaka T; Ito K; Nakashima K. Оxygen levels epigenetically regulate fate switching of neural precursor cells via hypoxia-inducible factor 1-notch signal interaction in the developing brain. Stem Cells. 2012;30(3):561–569. doi: 10.1002/stem.1019.

66. Namihira M; Kohyama J; Semi K; et al. Committed neuronal precursors confer astrocytic potential on residual neural precursor cells. Dev Cell. 2009;16(2):245–255. doi: 10.1016/j.devcel.2008.12.014.

67. Fan G; Martinowich K; Chin MH; et al. DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development. 2005;132(15):3345–3356. doi: 10.1242/dev.01912.

68. Hartley I; Elkhoury FF; Heon Shin J; et al. Long-lasting changes in DNA methylation following short-term hypoxic exposure in primary hippocampal neuronal cultures. PloS one. 2013;8(10):e77859. doi: 10.1371/journal.pone.0077859.

69. Xiong L; Wang F; Huang X; et al. DNA demethylation regulates the expression of miR-210 in neural progenitor cells subjected to hypoxia. FEBS J. 2012;279(23):4318–4326. doi: 10.1111/febs.12021.

70. Chio CC; Lin JW; Cheng HA; et al. MicroRNA-210 targets anti-apoptotic Bcl-2 expression and mediates hypoxia-induced apoptosis of neuroblastoma cells. Arch Toxicol. 2013;87(3):459–468. doi: 10.1007/s00204-012-0965-5.

71. Zeng L; He X; Wang Y; et al. MicroRNA-210 overexpression induces angiogenesis and neurogenesis in the normal adult mouse brain. Gene Ther. 2014;21(1):37–43. doi: 10.1038/gt.2013.55.

72. Manalo DJ; Rowan A; Lavoie T; et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood. 2005;105(2):659–669. doi: 10.1182/blood-2004-07-2958.

73. Ryan HE; Lo J; Johnson RS. HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J. 1998;17(11):3005–3015. doi: 10.1093/emboj/17.11.3005.

74. Tudisco L; Della Ragione F; Tarallo V; et al. Epigenetic control of hypoxia inducible factor-1-dependent expression of placen-tal growth factor in hypoxic conditions. Epigenetics. 2014;9(4):600–610. doi: 10.4161/epi.27835.

75. Chan YC; Banerjee J; Choi SY; Sen CK. miR-210: the master hypoxamir. Microcirculation. 2012;19(3):215–223. doi: 10.1111/j.1549-8719.2011.00154.x.

76. Grantham-McGregor S; Baker-Henningham H. Review of the evidence linking protein and energy to mental development. Public Health Nutr. 2005;8(7A):1191–1201. doi: 10.1079/phn2005805.

77. Morley R; Lucas A. Nutrition and cognitive development. Br Med Bull. 1997;53(1):123–134. doi: 10.1093/oxfordjournals.bmb.a011595.

78. Olness K. Effects on brain development leading to cognitive impairment: a worldwide epidemic. J Dev Behav Pediatr. 2003;24(2):120–130. doi: 10.1097/00004703-200304000-00009.

79. Walker SP; Wachs TD; Gardner JM; et al. Child development: risk factors for adverse outcomes in developing countries. Lancet. 2007;369(9556):145–157. doi: 10.1016/s0140-6736(07)60076-2.

80. Stevens A; Begum G; Cook A; et al. Epigenetic changes in the hypothalamic proopiomelanocortin and glucocorticoid receptor genes in the ovine fetus after periconceptional undernutrition. Endo-crinology. 2010;151(8):3652–3664. doi: 10.1210/en.2010-0094.

81. Antonow-Schlorke I; Schwab M; Cox LA; et al. Vulnerability of the fetal primate brain to moderate reduction in maternal global nutrient availability. Proc Natl Acad Sci U S A. 2011;108(7):3011–3016. doi: 10.1073/pnas.1009838108.

82. Florian ML; Nunes ML. Effects of intra-uterine and early extra-uterine malnutrition on seizure threshold and hippocampal morphometry of pup rats. Nutr Neurosci. 2011;14(4):151–158. doi: 10.1179/147683010x12611460764804.

83. Torres N; Bautista CJ; Tovar AR; et al. Protein restriction during pregnancy affects maternal liver lipid metabolism and fetal brain lipid composition in the rat. Am J Physiol Endocrinol Metab. 2010;298(2):E270–277. doi: 10.1152/ajpendo.00437.2009.

84. Ranade SC; Sarfaraz Nawaz M; Kumar Rambtla P; et al. Early protein malnutrition disrupts cerebellar development and impairs motor coordination. Br J Nutr. 2012;107(8):1167–1175. doi: 10.1017/s0007114511004119.

85. Melse-Boonstra A; Jaiswal N. Iodine deficiency in pregnancy; infancy and childhood and its consequences for brain development. Best Pract Res Clin Endocrinol Metab. 2010;24(1):29–38. doi:10.1016/j.beem.2009.09.002.

86. Sanches EF; Arteni NS; Spindler C; et al. Effects of pre- and postnatal protein malnutrition in hypoxic-ischemic rats. Brain Res. 2012;1438:85–92. doi: 10.1016/j.brainres.2011.12.024.

87. Albright CD; da Costa KA; Craciunescu CN; et al. Regulation of choline deficiency apoptosis by epidermal growth factor in CWSV-1 rat hepatocytes. Cell Physiol Biochem. 2005;15(1–4):59–68. doi: 10.1159/000083653.

88. Craciunescu CN; Albright CD; Mar MH; et al. Choline availability during embryonic development alters progenitor cell mitosis in developing mouse hippocampus. J Nutr. 2003;133(11):3614–3618.

89. Mehedint MG; Craciunescu CN; Zeisel SH. Maternal dietary choline deficiency alters angiogenesis in fetal mouse hippocam-pus. Proc Natl Acad Sci U S A. 2010;107(29):12834–12839. doi: 10.1073/pnas.0914328107.

90. Niculescu MD; Lupu DS. High fat diet-induced maternal obe-sity alters fetal hippocampal development. Int J Dev Neurosci. 2009;27(7):627–633. doi: 10.1016/j.ijdevneu.2009.08.005.

91. Tozuka Y; Wada E; Wada K. Diet-induced obesity in female mice leads to peroxidized lipid accumulations and impairment of hippo-campal neurogenesis during the early life of their offspring. FASEB J. 2009;23(6):1920–1934. doi: 10.1096/fj.08-124784.

92. Wickstrom R. Effects of nicotine during pregnancy: human and experimental evidence. Curr Neuropharmacol. 2007;5(3):213–222. doi: 10.2174/157015907781695955.

93. Pauly JR; Slotkin TA. Maternal tobacco smoking; nicotine repla-cement and neurobehavioural development. Acta Paediatr. 2008;97(10):1331–1337. doi: 10.1111/j.1651-2227.2008.00852.x.

94. Dwyer JB; McQuown SC; Leslie FM. The dynamic effects of nicotine on the developing brain. Pharmacol Ther. 2009;122(2):125–139. doi: 10.1016/j.pharmthera.2009.02.003.

95. Archer T. Effects of exogenous agents on brain development: stress; abuse and therapeutic compounds. CNS Neurosci Ther. 2011;17(5):470–489. doi: 10.1111/j.1755-5949.2010.00171.x.

96. Bruin JE; Gerstein HC; Holloway AC. Long-term consequences of fetal and neonatal nicotine exposure: a critical review. Toxicol Sci. 2010;116(2):364–374. doi: 10.1093/toxsci/kfq103.

97. Eppolito AK; Smith RF. Long-term behavioral and developmental consequences of pre- and perinatal nicotine. Pharmacol Biochem Behav. 2006;85(4):835–841. doi: 10.1016/j.pbb.2006.11.020.

98. Ernst M; Moolchan ET; Robinson ML. Behavioral and neural consequences of prenatal exposure to nicotine. J Am Acad Child Adolesc Psychiatry. 2001;40(6):630–641. doi: 10.1097/00004583-200106000-00007.

99. Suter MA; Abramovici AR; Griffin E; et al. In utero nicotine expo-sure epigenetically alters fetal chromatin structure and differentially regulates transcription of the glucocorticoid receptor in a rat model. Birth Defects Res A Clin Mol Teratol. 2015;103(7):583–588. doi: 10.1002/bdra.23395.

100. Chhabra D; Sharma S; Kho AT; et al. Fetal lung and placental methylation is associated with in utero nicotine exposure. Epigenetics. 2014;9(11):1473–1484. doi: 10.4161/15592294.2014.971593

101. Paquette AG; Lesseur C; Armstrong DA; et al. Placental HTR2A methylation is associated with infant neurobehavioral outcomes. Epigenetics. 2013;8(8):796–801. doi: 10.4161/epi.25358.

102. Markunas CA; Xu Z; Harlid S; et al. Identification of DNA methylat ion changes in newborns related to maternal s moking during pregnancy. Environ Health Perspect. 2014;122(10):1147–1153. doi: 10.1289/ehp.1307892.

103. Joubert BR; Hаberg SE; Nilsen RM; et al. 450K epigenomewide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2012;120(10):1425–1431. doi: 10.1289/ehp.1205412.

104. King CR. A novel embryological theory of autism causation involving endogenous biochemicals capable of initiating cellular gene transcription: a possible link between twelve autism risk factors and the autism ‘epidemic’. Med Hypotheses. 2011;76(5):653–660. doi: 10.1016/j.mehy.2011.01.024.

105. Ngai YF; Sulistyoningrum DC; O’Neill R; et al. Prenatal alcohol exposure alters methyl metabolism and programs serotonin transporter and glucocorticoid receptor expression in brain. Am J Physiol Regul Integr Comp Physiol. 2015;309(5):R613–622. doi: 10.1152/ajpregu.00075.2015.

106. Nagre NN; Subbanna S; Shivakumar M; et al. CB1-receptor knockout neonatal mice are protected against ethanol-induced impairments of DNMT1; DNMT3A; and DNA methylation. J Neurochem. 2015;132(4):429–442. doi: 10.1111/jnc.13006.

107. Laufer BI; Kapalanga J; Castellani CA; et al. Associative DNA methylation changes in children with prenatal alcohol exposure. Epigenomics. 2015;7(8):1259–1274. doi: 10.2217/epi.15.60.

108. Lee BY; Park SY; Ryu HM; et al. Changes in the methylation status of DAT; SERT; and MeCP2 gene promoters in the blood cell in families exposed to alcohol during the periconceptional period. Alcohol Clin Exp Res. 2015;39(2):239–250. doi: 10.1111/acer.12635.

109. Liang F; Diao L; Jiang N; et al. Chronic exposure to ethanol in male mice may be associated with hearing loss in offspring. Asian J Androl. 2015;17(6):985–990. doi: 10.4103/1008-682x.160267.

110. Cottrell EC; Seckl JR. Prenatal stress; glucocorticoids and the programming of adult disease. Front Behav Neurosci. 2009;3:19. doi: 10.3389/neuro.08.019.2009.

111. Seckl JR; Meaney MJ. Glucocorticoid programming. Ann N Y Acad Sci. 2004;1032:63–84. doi: 10.1196/annals.1314.006.

112. Weinstock M. The long-term behavioural consequences of prenatal stress. Neurosci Biobehav Rev. 2008;32(6):1073–1086. doi: 10.1016/j.neubiorev.2008.03.002.

113. Mairesse J; Lesage J; Breton C; et al. Maternal stress alters endocrine function of the feto-placental unit in rats. Am J Physiol Endocrinol Metab. 2007;292(6):E1526–1533. doi: 10.1152/ajpendo.00574.2006.

114. Meaney MJ; Szyf M. Maternal care as a model for experiencedependent chromatin plasticity? Trends Neurosci. 2005;28(9):456–463. doi: 10.1016/j.tins.2005.07.006.

115. Whitelaw A; Thoresen M. Antenatal steroids and the developing brain. Arch Dis Child Fetal Neonatal Ed. 2000;83(2):F154–157. doi: 10.1136/fn.83.2.f154.


Для цитирования:


Каркашадзе Г.А., Савостьянов К.В., Макарова С.Г., Намазова-Баранова Л.С., Маслова O.И., Яцык Г.В. НЕЙРОГЕНЕТИЧЕСКИЕ АСПЕКТЫ ГИПОКCИЧЕСКИ-ИШЕМИЧЕСКИХ ПЕРИНАТАЛЬНЫХ ПОРАЖЕНИЙ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ. Вопросы современной педиатрии. 2016;15(5):440-451. https://doi.org/10.15690/vsp.v15i5.1618

For citation:


Karkashadze G.A., Savostianov K.V., Makarova S.G., Namazova-Baranova L.S., Maslova O.I., Yatsyk G.V. NEUROGENETIC ASPECTS OF PERINATAL HYPOXIC-ISCHEMIC AFFECTIONS OF THE CENTRAL NERVOUS SYSTEM. Current pediatrics. 2016;15(5):440-451. (In Russ.) https://doi.org/10.15690/vsp.v15i5.1618

Просмотров: 331


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)