Preview

Вопросы современной педиатрии

Расширенный поиск

Применение анакинры у пациентов с криопиринассоциированными периодическими синдромами и другими аутовоспалительными заболеваниями

https://doi.org/10.15690/vsp.v15i6.1654

Полный текст:

Аннотация

Представлено описание основных аутовоспалительных синдромов, а также ключевой роли интерлейкина (IL) 1Мв патогенезе этих заболеваний. Приведены данные по опыту применения анакинры — растворимого антагониста рецептора IL1, а также результаты рандомизированных клинических исследований и описания серии случаевМприменения анакинры при аутовоспалительных и ряде других неревматических заболеваний. Приводятся данные об эффективности и безопасности растворимого антагониста рецептора IL1.

Об авторе

М. М. Костик
Санкт-Петербургский государственный педиатрический медицинский университет
Россия

кандидат медицинских наук, доцент кафедры госпитальной педиатрии СПбГПМУМАдрес: 194100, Санкт-Петербург, ул. Литовская, д. 2, тел.: +7 (812) 416-52-98



Список литературы

1. Kastner DL, Aksentijevich I, Goldbach-Mansky R. Auto in flammatory disease reloaded: a clinical perspective. Cell. 2010;140(6): 784–790. doi: 10.1016/j.cell.2010.03.002.

2. Gattorno M, Tassi S, Carta S, et al. Pattern of interleukin-1b secretion in response to lipopolysaccharide and ATP before and after interleukin-1 blockade in patients with CIAS1 mutations. Arthritis Rheum. 2007;56(9):3138–3148. doi: 10.1002/art.22842.

3. Dinarello CA. Anti-inflammatory agents: present and future. Cell. 2010;140(6):935–950. doi: 10.1016/j.cell.2010.02.043.

4. Dinarello C, Arend W, Sims J, et al. IL-1 family nomenclature. Nat Immunol. 2010;11(11):973. doi: 10.1038/ni1110-973.

5. Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011;117(4):3720–3732. doi: 10.1182/blood-2010-07-273417.

6. Berda-Haddad Y, Robert S, Salers P, et al. Sterile inflammation of endothelial cell-derived apoptotic bodies is mediated by interleukin-1a. Proc Natl Acad Sci U S A. 2011;108(51):20684–20689. doi: 10.1073/pnas.1116848108.

7. Rider P, Carmi Y, Guttman O, et al. IL-1a and IL-1b recruit different myeloid cells and promote different stages of sterile inflammation. J Immunol. 2011;187(9):4835–4843. doi: 10.4049/jimmunol.1102048.

8. Cohen I, Rider P, Carmi Y, et al. Differential release of chromatinbound IL-1a discriminates between necrotic and apoptotic cell death by the ability to induce sterile inflammation. Proc Natl Acad Sci U S A. 2010;107(6):2574–2579. doi: 10.1073/pnas.0915018107.

9. Beyer C, Pisetsky DS. The role of microparticles in the pathogenesis of rheumatic diseases. Nat Rev Rheumatol. 2010;6(1): 21–29. doi: 10.1038/nrrheum.2009.229.

10. Dinarello CA, Ikejima T, Warner SJ, et al. Interleukin 1 induces interleukin 1. I. Induction of circulating interleukin 1 in rabbits in vivo and in human mononuclear cells in vitro. J Immunol. 1987;139(6):1902–1910.

11. Dinarello CA. A clinical perspective of IL-1_ as the gatekeeper of inflammation. Eur J Immunol. 2011;41(5):1203–1217. doi: 10.1002/eji.201141550.

12. Aksentijevich I, Nowak M, Mallah M, et al. De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum. 2002;46(12): 3340–3348. doi: 10.1002/art.10688.

13. Hoffman HM, Wanderer AA, Broide DH. Familial cold auto inflammatory syndrome: phenotype and genotype of an autosomal dominant periodic fever. J Allergy Clin Immunol. 2001;108(4): 615–620. doi: 10.1067/mai.2001.118790.

14. Agostini L, Martinon F, Burns K, et al. NALP3 forms an IL-1bprocessing inflammasome with increased activity in Muckle-Wells auto-inflammatory disorder. Immunity. 2004;20(3):319–325. doi: 10.1016/S1074-7613(04)00046-9.

15. Goldbach-Mansky R. Current status of understanding the pathogenesis and management of patients with NOMID/CINCA. Curr Rheumatol Rep. 2011;13(2):123–131. doi: 10.1007/s11926-011-0165-y.

16. Hawkins PN, Lachmann HJ, Aganna E, McDermott MF. Spectrum of clinical features in Muckle-Wells syndrome and response to anakinra. Arthritis Rheum. 2004;50(2):607–612. doi: 10.1002/art.20033.

17. Prieur AM, Griscelli C. Arthropathy with rash, chronic meningitis, eye lesions, and mental retardation. J Pediatr. 1981;99(1):79–83. doi: 10.1016/s0022-3476(81)80961-4.

18. Goldbach-Mansky R, Dailey NJ, Canna SW, et al. Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med. 2006;355(6):581–592. doi: 10.1056/NEJMoa055137.

19. Lepore L, Paloni G, Caorsi R, et al. Follow-up and quality of life of patients with cryoprin- associated periodic syndromes treated with Anakinra. J Pediatr. 2010;157(2):310–315.e1. doi: 10.1016/j.jpeds.2010.02.040.

20. De Cunto CL, Liberatore DI, San Roman JL, et al. Infantile-onset multisystem inflammatory disease: a differential diagnosis of systemic juvenile rheumatoid arthritis. J Pediatr. 1997;130(4):551–556. doi: 10.1016/s0022-3476(97)70238-5.

21. Kitley JL, Lachmann HJ, Pinto A, et al. Neurologic manifestations of the cryopyrin- associated periodic syndrome. Neurology. 2010;74(16):1267–1270. doi: 10.1212/WNL.0b013e3181d9ed69.

22. Milhavet F, Cuisset L, Hoffman HM, et al. The infevers autoinflammatory mutation online registry: update with new genes and functions. Hum Mutat. 2008;29(6):803–808. doi: 10.1002/humu.20720.

23. Jesus AA, Silva C, Segundo G, et al. Phenotype–genotype analysis of cryopyrin- associated periodic syndromes (CAPS): description of a rare non-exon 3 and a novel CIAS1 missense mutation. J Clin Immunol 2008;28(2):134–138. doi: 10.1007/s10875-007-9150-7.

24. Jeru I, Marlin S, Le Borgne G, et al. Functional consequences of a germlinemutation in the leucine-rich repeat domain of NLRP3 identified in an atypical autoinflammatory disorder. Arthritis Rheum. 2010;62(4):1176–1185. doi: 10.1002/art.27326.

25. Neven B, Callebaut I, Prieur AM, et al. Molecular basis of the spectral expression of CIAS1 mutations associated with phagocytic cell-mediated autoinflammatory disorders CINCA/NOMID, MWS, and FCU. Blood. 2004;103(7):2809–2815. doi: 10.1182/blood-2003-07- 2531.

26. Aksentijevich I, Putnam D, Remmers EF, et al. The clinical continuum of cryopyrinopathies: novel CIAS1 mutations in North American patients and a new cryopyrin model. Arthritis Rheum. 2007;56(4):1273–1285. doi: 10.1002/art.22491.

27. Feldmann J, Prieur AM, Quartier P, et al. Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet. 2002;71(1):198–203. doi: 10.1086/341357.

28. Tanaka N, Izawa K, Saito MK, et al. High incidence of NLRP3 somatic mosaicism in patients with chronic infantile neurologic, cutaneous, articular syndrome: results of an International Multicenter Collaborative Study. Arthritis Rheum. 2011;63(11):3625–3632. doi: 10.1002/art.30512.

29. Danielson PB, Kristinsson R, Shelton RJ, Laberge GS. Separating human DNA mixtures using denaturing high-performance liquid chromatography. Expert Rev Mol Diagn. 2005;5(1):53–63. doi: 10.1586/14737159.5.1.53.

30. Omoyinmi E, Melo Gomes S, Standing A, et al. Brief Report: whole-exome sequencing revealing somatic NLRP3 mosaicism in a patient with chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheumatol. 2014;66(1):197–202. doi: 10.1002/art.38217.

31. Nakagawa K, Gonzalez-Roca E, Souto A, et al. Somatic NLRP3 mosaicism in Muckle-Wells syndrome. A genetic mechanism shared by different phenotypes of cryopyrin-associated periodic syndromes. Ann Rheum Dis. 2015;74(3):603–610. doi: 10.1136/annrheumdis-2013- 204361.

32. Prieur AM, Griscelli C, Lampert F, et al. A chronic, infantile, neurological, cutaneous and articular (CINCA) syndrome: a specific entity analysed in 30 patients. Scand J Rheumatol. 1987; 16 Suppl 66:57–68. doi: 10.3109/03009748709102523.

33. Stych B, Dobrovolny D. Familial cold auto-inflammatory syndrome (FCAS): characterization of symptomatology and impact on patients’ lives. Curr Med Res Opin. 2008;24(6):1577–1582. doi: 10.1185/03007990802081543.

34. Kone-Paut I, Lachmann HJ, Kuemmerle-Deschner JB, et al. Sustained remission of symptoms and improved health-related quality of life in patients with cryopyrin-associated periodic syndrome treated with canakinumab: results of a double-blind placebo- controlled randomized withdrawal study. Arthritis Res Ther. 2011;13(6):R202. doi: 10.1186/ar3535.

35. Hawkins PN, Lachmann HJ, McDermott MF. Interleukin-1-receptor antagonist in the Muckle-Wells syndrome. N Engl J Med. 2003; 348(25):2583–2584. doi: 10.1056/NEJM200306193482523.

36. Hoffman HM, Rosengren S, Boyle DL, et al. Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist. Lancet. 2004;364(9447):1779–1785. doi: 10.1016/S0140-6736(04)17401-1.

37. Liao Z, Grimshaw RS, Rosenstreich DL. Identification of a specific interleukin 1 inhibitor in the urine of febrile patients. J Exp Med. 1984;159(1):126–136. doi: 10.1084/jem.159.1.126.

38. Liao Z, Haimovitz A, Chen Y, et al. Characterization of a human interleukin 1 inhibitor. J Immunol. 1985;134(6):3882–3886.

39. Seckinger P, Lowenthal JW, Williamson K, et al. A urine inhibitor of interleukin 1 activity that blocks ligand binding. J Immunol. 1987;139(5):1546–1549.

40. Singh JA, Christensen R, Wells GA, et al. Biologics for rheumatoid arthritis: an overview of Cochrane reviews. Sao Paulo Med J. 2010;128(5):309–310.

41. Cohen SB, Moreland LW, Cush JJ, et al. A multicenter, doubleblind, randomized, placebo- controlled trial of anakinra (Kineret), a recombinant interleukin 1 receptor antagonist, in patients with rheumatoid arthritis treated with background methotrexate therapy. Ann Rheum Dis. 2004;63(9):1062–1068. doi: 10.1136/ard.2003.016014.

42. Thaler K, Chandiramani DV, Hansen RA, Gartlehner G. Efficacy and safety of anakinra for the treatment of rheumatoid arthritis: an update of the Oregon Drug Effectiveness Review Project. Biologics. 2009;3:485–498. doi: 10.2147/BTT.S3579

43. Botsios C, Sfriso P, Furlan A, et al. [Anakinra, a recombinant human IL-1 receptor antagonist, in clinical practice. Outcome in 60 patients with severe rheumatoid arthritis. (In Italian).] Reumatismo. 2007;59(1):32–37.

44. Primdahl J, Clausen J, Horslev-Petersen K. Results from systematic screening for cardiovascular risk in outpatients with rheumatoid arthritis in accordance with the EULAR recommendations. Ann Rheum Dis. 2013;72(11):1771–1776. doi: 10.1136/annrheumdis- 2013-203682.

45. Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464(7293):1357–1361. doi: 10.1038/nature08938.

46. Kamari Y, Werman-Venkert R, Shaish A, et al. Differential role and tissue specificity of interleukin-1a gene expression in atherogenesis and lipid metabolism. Atherosclerosis. 2007;195(1):31–38. doi: 10.1016/j.atherosclerosis.2006.11.026.

47. Abbate A, Van Tassell BW, Biondi-Zoccai GG. Blocking interleukin-1 as a novel therapeutic strategy for secondary prevention of cardiovascular events. BioDrugs. 2012;26(4):217–233. doi: 10.2165/11631570-000000000-00000.

48. Abbate A, Van Tassell BW, Biondi-Zoccai G, et al. Effects of interleukin-1 blockade with anakinra on adverse cardiac remodeling and heart failure after acute myocardial infarction [from the Virginia Commonwealth University-Anakinra Remodeling Trial (2) (VCU-ART2) pilot study]. Am J Cardiol. 2013;111(10):1394–1400. doi: 10.1016/j.amjcard.2013.01.287.

49. Ikonomidis I, Tzortzis S, Lekakis J, et al. Lowering interleukin-1 activity with anakinra improves myocardial deformation in rheumatoid arthritis. Heart. 2009;95(18):1502–1507. doi: 10.1136/hrt.2009.168971.

50. Larsen CM, Faulenbach M, Vaag A, et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007; 356(15):1517–1526. doi: 10.1056/NEJMoa065213.

51. Larsen CM, Faulenbach M, Vaag A, et al. Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care. 2009;32(9):1663–1668. doi: 10.2337/dc09-0533.

52. Pascual V, Allantaz F, Arce E, et al. Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J Exp Med. 2005;201(9):1479–1486. doi: 10.1084/jem.20050473.

53. Dinarello CA, Simon A, van der Meer JW. Treating inflammation by blocking interleukin- 1 in a broad spectrum of diseases. Nat Rev Drug Discov. 2012;11(8):633–652. doi: 10.1038/nrd3800.

54. Kullenberg T, Lofqvist M, Leinonen M, et al. Long-term safety profile of anakinra in patients with severe cryopyrin-associated periodic syndromes. Rheumatology (Oxford). 2016;55(8): 1499–1506. doi: 10.1093/rheumatology/kew208.

55. Neven B, Marvillet I, Terrada C, et al. Long-term efficacy of the interleukin-1 receptor antagonist anakinra in ten patients with neonatal-onset multisystem inflammatory disease/chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum. 2010;62(1):258–267. doi: 10.1002/art.25057.

56. Sibley CH, Plass N, Snow J, et al. Sustained response and prevention of damage progression in patients with neonatal-onset multisystem inflammatory disease treated with anakinra: a cohort study to determine three- and five-year outcomes. Arthritis Rheum. 2012;64(7):2375–2386. doi: 10.1002/art.34409.

57. Chae JJ, Wood G, Masters SL et al. The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1beta production. Proc Natl Acad Sci U S A. 2006;103(26):9982–9987. doi: 10.1073/pnas.0602081103.

58. Goldfinger SE. Colchicine for familial Mediterranenan fever. N Engl J Med. 1972;287(25):1302. doi: 10.1056/NEJM197212212872514.

59. Ozen S, Bilginer Y, Aktay Ayaz N, Calguneri M. Anti-interleukin 1 treatment for patients with familial Mediterranean fever resistant to colchicine. J Rheumatol. 2011;38(3):516–518. doi: 10.3899/jrheum.100718.

60. Meinzer U, Quartier P, Alexandra JF, et al. Interleukin-1 targeting drugs in familial Mediterranean fever: a case series and a review of the literature. Semin Arthritis Rheum. 2011;41(2):265–271. doi: 10.1016/j.semarthrit.2010.11.003.

61. Stankovic Stojanovic K, Delmas Y, Torres PU, et al. Dramatic beneficial effect of interleukin-1 inhibitor treatment in patients with familial Mediterranean fever complicated with amyloidosis and renal failure. Nephrol Dial Transplant. 2012;27(5):1898–1901. doi: 10.1093/ndt/gfr528.

62. Bilginer Y, Ayaz NA, Ozen S. Anti-IL-1 treatment for secondary amyloidosis in an adolescent with FMF and Behcet’s disease. Clin Rheumatol. 2010;29(2):209–210. doi: 10.1007/s10067-009-1279-8.

63. Stoffels M, Simon A. Hyper-IgD syndrome or mevalonate kinase deficiency. Curr Opin Rheumatol. 2011;23(5):419–423. doi: 10.1097/bor.0b013e328349c3b1.

64. Bodar EJ, Kuijk LM, Drenth JP, et al. On-demand anakinra treatment is effective in mevalonate kinase deficiency. Ann Rheum Dis. 2011;70(12):2155–2158. doi: 10.1136/ard.2011.149922.

65. McDermott MF, Aksentijevich I, Galon J, et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell. 1999;97(1):133–144. doi: 10.1016/S0092-8674(00)80721-7.

66. Galon J, Aksentijevich I, McDermott MF, et al. TNFRSF1A mutations and autoinflammatory syndromes. Curr Opin Immunol. 2000;12(4):479–486. doi: 10.1016/S0952- 7915(00)00124-2.

67. Bulua AC, Mogul DB, Aksentijevich I, et al. Efficacy of etanercept in the tumor necrosis factor receptor-associated periodic syndrome: a prospective, open-label,dose-escalation study. Arthritis Rheum. 2012;64(3):908–913. doi: 10.1002/art.33416.

68. Gattorno M, Pelagatti MA, Meini A, et al. Persistent efficacy of anakinra in patients with tumor necrosis factor receptor associated periodic syndrome. Arthritis Rheum. 2008;58(5):1516–1520. doi: 10.1002/art.23475.

69. Simon A, Bodar EJ, van der Hilst JCH, et al. Beneficial response to interleukin-1 receptor antagonist in TRAPS. Am J Med. 2004; 117(3):208–210. doi: 10.1016/j.amjmed.2004.02.039.

70. Aksentijevich I, Masters SL, Ferguson PJ, et al. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N Engl J Med. 2009;360(23):2426–2437. doi: 10.1056/NEJMoa0807865.

71. Marrakchi S, Guigue P, Renshaw BR, et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N Engl J Med. 2011;365(7):620–628. doi: 10.1056/NEJMoa1013068.

72. Rossi-Semerano L, Piram M, Chiaverini C, et al. First clinical description of an infant with interleukin-36-receptor antagonist deficiency successfully treated with anakinra. Pediatrics. 2013;132(4):e1043–1047. doi: 10.1542/peds.2012-3935.

73. Quartier P, Allantaz F, Cimaz R, et al. A multicentre, randomised, double-blind, placebo- controlled trial with the interleukin-1 receptor antagonist anakinra in patients with systemic-onset juvenile idiopathic arthritis (ANAJIS trial). Ann Rheum Dis. 2011;70(5): 747– 754. doi: 10.1136/ard.2010.134254.

74. Yokota S, Imagawa T, Mori M, et al. Efficacy and safety of tocilizumab in patients with systemic-onset juvenile idiopathic arthritis: a randomized, double-blind, placebo-controlled, withdrawal phase III trial. Lancet. 2008;371(9617):998–1006. doi: 10.1016/S0140-6736(08)60454-7.

75. Ruperto N, Brunner HI, Quartier P, et al. Two randomized trials of canakinumab in systemic juvenile idiopathic arthritis. N Engl J Med. 2012;367(25):2396–2406. doi: 10.1056/NEJMoa1205099.

76. Vastert SJ, de Jager W, Noordman BJ, et al. Effectiveness of firstline treatment with recombinant interleukin-1 receptor antagonist in steroid-naive patients ith new-onset systemic juvenile idiopathic arthritis: results of a prospective cohort study. Arthritis Rheum. 2014;66(4):1034–1043. doi: 10.1002/art.38296.

77. Ringold S, Weiss PF, Beukelman T, et al. 2013 update of the 2011 American College of Rheumatology recommendations for the treatment of juvenile idiopathic arthritis: recommendations for the medical therapy of children with systemic juvenile idiopathic arthritis and tuberculosis screening among children receiving biologic medications. Arthritis Rheum. 2013;65(10):2499–2512. doi: 10.1002/art.38092.

78. Gattorno M, Piccini A, Lasiglie D, et al. The pattern of response to anti-interleukin-1 treatment distinguishes two subsets of patients with systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 2008;58(5):1505–1515. doi: 10.1002/art.23437.

79. Nigrovic PA, Mannion M, Prince FH, et al. Anakinra as first-line disease-modifying therapy in systemic juvenile idiopathic arthritis: report of forty-six patients from an international multicenter series. Arthritis Rheum. 2011;63(2):545–555. doi: 10.1002/art.30128.

80. Naumann L, Feist E, Natusch A, et al. IL1-receptor antagonist anakinra provides long- lasting efficacy in the treatment of refractory adult-onset Still’s disease. Ann Rheum Dis. 2010;69(2):466–467. doi: 10.1136/ard.2009.108068.

81. Ravelli A, Magni-Manzoni S, Pistorio A, et al. Preliminary diagnostic guidelines for macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. J Pediatr. 2005;146(5): 598–604. doi: 10.1016/j.jpeds.2004.12.016.

82. Canna SW, de Jesus AA, Gouni S, et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet. 2014;46(10): 1140–1146. doi: 10.1038/ng.3089.

83. Miettunen PM, Narendran A, Jayanthan A, et al. Successful treatment of severe paediatric rheumatic disease-associated macrophage activation syndrome with interleukin- 1 inhibition following conventional immunosuppressive therapy: case series with 12 patients. Rheumatology (Oxford). 2011;50(2):417–419. doi: 10.1093/rheumatology/keq218.

84. Kahn PJ, Cron RQ. Higher-dose Anakinra is effective in a case of medically refractory macrophage activation syndrome. J Rheumatol. 2013;40(5):743–744. doi: 10.3899/jrheum.121098.

85. Scott IC, Hajela V, Hawkins PN, et al. A case series and systematic literature review of anakinra and immunosuppression in idiopathic recurrent pericarditis. J Cardiol Cases. 2011;4(2): e93–97. doi: 10.1016/j.jccase.2011.07.003.


Для цитирования:


Костик М.М. Применение анакинры у пациентов с криопиринассоциированными периодическими синдромами и другими аутовоспалительными заболеваниями. Вопросы современной педиатрии. 2016;15(6):576-583. https://doi.org/10.15690/vsp.v15i6.1654

For citation:


Kostik M.M. Use of Anakinra in Patients with Cryopyrin-Associated Periodic Syndromes and Other Autoinflammatory Diseases. Current Pediatrics. 2016;15(6):576-583. (In Russ.) https://doi.org/10.15690/vsp.v15i6.1654

Просмотров: 205


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)