Поражение почек и перинатальное программирование артериальной гипертензии: результаты экспериментальных исследований
https://doi.org/10.15690/vsp.v16i6.1820
Аннотация
Ухудшение условий развития в перинатальный период (голодание матери, избыток ионов натрия в ее рационе, воздействие глюкокортикостероидов, плацентарная недостаточность) программирует значительные изменения экскреции ионов натрия у новорожденного и ведет к развитию артериальной гипертензии. Исследования на экспериментальных животных показывают, что неблагоприятные условия внутриутробного развития могут уменьшить эффективную площадь гломерулярной фильтрации и ее скорость. Эти обстоятельства увеличивают экспрессию мембранных переносчиков ионов натрия в апикальных мембранах, продукцию супероксидных радикалов и усиливают реабсорбцию натрия. В статье обсуждаются потенциальные механизмы перинатального программирования почечной гипертензии у человека.
Об авторах
О. П. КовтунРоссия
Раскрытие интересов:
подтвердила отсутствие конфликта интересов, о котором необходимо сообщить
П. Б. Цывьян
Россия
доктор медицинских наук, профессор, заведующий кафедрой нормальной физиологии УГМУ, ведущий научный сотрудник Уральского НИИ охраны материнства и младенчества
Адрес: 620028, Екатеринбург, ул. Репина д. 3, тел.: +7 (343) 214-86-79
Раскрытие интересов:
в 2013–2015 гг. участвовал в выполнении гранта РФФИ 13- 04-96080 «Исследование механизмов регуляции сердечно- сосудистой системы эмбриона и плода человека при беременности, индуцированной экстракорпоральным оплодотворением»
Список литературы
1. Guyton AC. The surprising kidney-fluid mechanism for pressure control — its infinite gain. Hypertension. 1990;16(6):725–730. doi: 10.1161/01.hyp.16.6.725
2. Mesquita FF, Gontijo JA, Boer PA. Expression of renin-angiotensin system signalling compounds in maternal protein-restricted rats: effect on renal sodium excretion and blood pressure. Nephrol Dial Transplant. 2010;25(2):380–388. doi: 10.1093/ndt/gfp505.
3. Barker DJ. The origins of the developmental origins theory. J Intern Med. 2007;261(5):412–417. doi: 10.1111/j.1365-2796.2007.01809.x.
4. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359(1):61–73. doi: 10.1056/NEJMra0708473.
5. Ojeda NB, Grigore D, Alexander BT. Developmental programming of hypertension insight from animal models of nutritional manipulation. Hypertension. 2008;52(1):44–50. doi: 10.1161/Hypertensionaha.107.092890.
6. Vehaskari VM, Woods LL. Prenatal programming of hypertension: lessons from experimental models. J Am Soc Nephrol. 2005;16(9):2545–2556. doi: 10.1681/Asn.2005030300.
7. Hoppe CC, Evans RG, Moritz KM, et al. Combined prenatal and postnatal protein restriction influences adult kidney structure, function, and arterial pressure. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R462–R469. doi: 10.1152/ajpregu.00079.2006.
8. Seckl JR, Holmes MC. Mechanisms of disease: glucocorticoids, their placental metabolism and fetal ‘programming’ of adult pathophysiology. Nat Clin Pract Endocrinol Metab. 2007;3(6): 479–488. doi: 10.1038/ncpendmet0515.
9. Celsi G, Kistner A, Aizman R, et al. Prenatal dexamethasone causes oligonephronia, sodium retention, and higher blood pressure in the offspring. Pediatr Res. 1998;44(3):317– 322. doi: 10.1203/00006450-199809000-00009.
10. O’Regan D, Kenyon CJ, Seckl JR, Holmes MC. Prenatal dexamethasone ‘programmes’ hypotension, but stress-induced hypertension in adult offspring. J Endocrinol. 2008;196(2): 343–352. doi: 10.1677/JOE-07-0327.
11. Ortiz LA, Quan A, Zarzar F, et al. Prenatal dexamethasone programs hypertension and renal injury in the rat. Hypertension. 2003;41(2):328–334. doi: 10.1161/01.hyp.0000049763.51269.51
12. Henriksen T, Clausen T. The fetal origins hypothesis: placental insufficiency and inheritance versus maternal malnutrition in well-nourished populations. Acta Obstet Gynecol Scand. 2002; 81(2):112–114. doi: 10.1034/j.1600-0412.2002.810204.x.
13. Alexander BT. Placental insufficiency leads to develop ment of hypertension in growth- restricted offspring. Hypertension. 2003;41(3):457–462. doi: 10.1161/01.Hyp.0000053448.95913.3d.
14. Contreras RJ, Wong DL, Henderson R, et al. High dietary NaCl early in development enhances mean arterial pressure of adult rats. Physiol Behav. 2000;71(1–2):173–181. doi: 10.1016/S0031-9384(00)00331-0.
15. Koleganova N, Piecha G, Ritz E, et al. Both high and low maternal salt intake in pregnancy alter kidney development in the offspring. Am J Physiol Renal Physiol. 2011;301(2):F344–F354. doi: 10.1152/ajprenal.00626.2010.
16. Meneton P, Jeunemaitre X, De Wardener HE, Macgregor GA. Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases. Physiol Rev. 2005;85(2):679–715. doi: 10.1152/physrev.00056.2003.
17. Eriksson JG, Forsen T, Tuomilehto J, et al. Early growth and coronary heart disease in later life: longitudinal study. BMJ. 2001;322(7292):949–953. doi: 10.1136/bmj.322.7292.949.
18. Eriksson JG. Early growth and coronary heart disease and type 2 diabetes: findings from the Helsinki Birth Cohort Study (HBCS). Am J Clin Nutr. 2011;94(6):1799s–1802s. doi: 10.3945/ajcn.110.000638.
19. Mackenzie HS, Brenner BM. Fewer nephrons at birth — a missing link in the etiology of essential-hypertension. Am J Kidney Dis. 1995;26(1):91–98. doi: 10.1016/0272-6386(95)90161-2.
20. Jansson N, Pettersson J, Haafiz A, et al. Down-regulation of placental transport of amino acids precedes the development of intrauterine growth restriction in rats fed a low protein diet. J Physiol. 2006;576(Pt 3):935–946. doi: 10.1113/jphysiol.2006.116509.
21. Hughson M, Farris AB, 3rd, Douglas-Denton R, et al. Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int. 2003;63(6):2113–2122. doi: 10.1046/j.1523-1755.2003.00018.x.
22. Woods LL, Ingelfinger JR, Nyengaard JR, Rasch R. Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. Pediatr Res. 2001;49(4): 460–467. doi: 10.1203/00006450-200104000-00005.
23. Wlodek ME, Westcott K, Siebel AL, et al. Growth restriction before or after birth reduces nephron number and increases blood pressure in male rats. Kidney Int. 2008;74(2):187–195. doi: 10.1038/ki.2008.153.
24. Brennan KA, Kaufman S, Reynolds SW, et al. Differential effects of maternal nutrient restriction through pregnancy on kidney development and later blood pressure control in the resulting offspring. Am J Physiol Regul Integr Comp Physiol. 2008;295(1):R197–R205. doi: 10.1152/ajpregu.00741.2007.
25. Ruta LA, Dickinson H, Thomas MC, et al. High-salt diet reveals the hypertensive and renal effects of reduced nephron endowment. Am J Physiol Renal Physiol. 2010;298(6):F1384–F1392. doi: 10.1152/ajprenal.00049.2010.
26. Solomon S. Developmental-changes in nephron number, proximal tubular length and superficial nephron glomerular-filtration rate of rats. J Physiol. 1977;272(3):573–589. doi: 10.1113/jphysiol.1977.sp012061.
27. Tufro-McReddie A, Romano LM, Harris JM, et al. Angiotensin-II regulates nephrogenesis and renal vascular development. Am J Physiol. 1995;269(1):F110–F115.
28. Saez F, Castells MT, Zuasti A, et al. Sex differences in the renal changes elicited by angiotensin II blockade during the nephrogenic period. Hypertension. 2007;49(6):1429– 1435. doi: 10.1161/Hypertensionaha.107.087957.
29. Петренко В.М. Развитие человека. Вопросы развития в анатомии человека. — М.- Берлин: Директ-Медиа; 2015. — 165 с. [Petrenko VМ. Razvitie cheloveka. Voprosy razvitiya v anatomii cheloveka. Moscow-Berlin: Direct-Media; 2015. 165 p. (In Russ).]
30. Quigley R. Developmental changes in renal function. Curr Opin Pediatr. 2912;24(2):184–190.
31. Sutherland MR, Gubhaju L, Moore L, et al. Accelerated maturation and abnormal morphology in the preterm neonatal kidney. J Am Soc Nephrol. 2011;22(7):1365–1374. doi: 10.1681/Asn.2010121266.
32. Coresh J, Selvin E, Stevens LA, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298(17):2038–2047. doi: 10.1001/jama.298.17.2038.
33. Szabo AJ, Muller V, Chen GF, et al. Nephron number determines susceptibility to renal mass reduction-induced CKD in Lewis and Fisher 344 rats: implications for development of experimentally induced chronic allograft nephropathy. Nephrol Dial Transplant. 2008;23(8):2492–2495. doi: 10.1093/ndt/gfn112.
34. Ojeda NB. Low birth weight increases susceptibility to renal injury in a rat model of mild ischemia-reperfusion. Am J Physiol Renal Physiol. 2011;301(2):F420–426. doi: 10.1152/ajprenal.00045.2011.
35. Woods LL, Weeks DA, Rasch R. Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis. Kidney Int. 2004;65(4):1339–1348. doi: 10.1111/j.1523-1755.2004.00511.x.
36. Lelievre-Pegorier M, Vilar J, Ferrier ML, et al. Mild vitamin A deficiency leads to inborn nephron deficit in the rat. Kidney Int. 1998;54(5):1455–1462. doi: 10.1046/j.1523-1755.1998.00151.x.
37. Drake KA, Sauerbry MJ, Blohowiak SE, et al. Iron deficiency and renal development in the newborn rat. Pediatr Res. 2009;66(6): 619–624. doi: 10.1203/PDR.0b013e3181be79c2.
38. Abdel-Hakeem AK, Henry TQ, Magee TR, et al. Mechanisms of impaired nephrogenesis with fetal growth restriction: altered renal transcription and growth factor expression. Am J Obstet Gynecol. 2008;199(3):252 e251–257. doi: 10.1016/j.ajog.2008.05.018.
39. Casanovas Mdel C, Lutter CK, Mangasaryan N, et al. Multisectoral interventions for healthy growth. Matern Child Nutr. 2013;9 Suppl 2:46–57. doi: 10.1111/mcn.12082.
40. Woods LL, Ingelfinger JR, Rasch R. Modest maternal protein restriction fails to program adult hypertension in female rats. Am J Physiol Regul Integr Comp Physiol. 2005;289(4):R1131–1136. doi: 10.1152/ajpregu.00037.2003.
41. Iosipiv IV, Schroeder M. A role for angiotensin II AT1 receptors in ureteric bud cell branching. Am J Physiol Renal Physiol. 2003;285(2):F199–207. doi: 10.1152/ajprenal.00401.2002.
42. McMullen S, Langley-Evans SC. Sex-specific effects of prenatal low-protein and carbenoxolone exposure on renal angiotensin receptor expression in rats. Hypertension. 2005;46(6):1374–1380. doi: 10.1161/01.HYP.0000188702.96256.46.
43. Dickinson H, Walker DW, Wintour EM, Moritz K. Maternal dexamethasone treatment at midgestation reduces nephron number and alters renal gene expression in the fetal spiny mouse. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R453–R461. doi: 10.1152/ajpregu.00481.2006.
44. Tay SH, Blache D, Gregg K, Revell DK. Consumption of a high-salt diet by ewes during pregnancy alters nephrogenesis in 5-month-old offspring. Animal. 2012;6(11):1803–1810. doi: 10.1017/S1751731112000584.
45. Balbi AP, Costa RS, Coimbra TM. Postnatal renal development of rats from mothers that received increased sodium intake. Pediatr Nephrol. 2004;19(11):1212–1218. doi: 10.1007/s00467-004-1586-x.
46. Pham TD, MacLennan NK, Chiu CT, et al. Uteroplacental insufficiency increases apoptosis and alters p53 gene methylation in the full-term IUGR rat kidney. Am J Physiol Regul Integr Comp Physiol. 2003;285(5):R962–R970. doi: 10.1152/ajpregu.00201.2003.
47. Bauer R, Walter B, Brust P, et al. Impact of asymmetric intrauterine growth restriction on organ function in newborn piglets. Eur J Obstet Gynecol Reprod Biol. 2003;110:S40–S49. doi: 10.1016/S0301-2115(03)00171-4.
48. Crowley SD, Coffman TM. Recent advances involving the reninangiotensin system. Exp Cell Res. 2012;318(9):1049–1056. doi: 10.1016/j.yexcr.2012.02.023.
49. Vehaskari VM, Stewart T, Lafont D, et al. Kidney angiotensin and angiotensin receptor expression in prenatally programmed hypertension. Am J Physiol Renal Physiol. 2004;287(2):F262–267. doi: 10.1152/ajprenal.00055.2004.
50. Goyal R, Goyal D, Leitzke A, et al. Brain renin-angiotensin system: fetal epigenetic programming by maternal protein restriction during pregnancy. Reprod Sci. 2010;17(3):227–238. doi: 10.1177/1933719109351935.
51. Vehaskari VM, Aviles DH, Manning J. Prenatal programming of adult hypertension in the rat. Kidney Int. 2001;59(1):238-245. doi: 10.1046/j.1523-1755.2001.00484.x.
52. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–233. doi: 10.1016/j.cell.2009.01.002.
53. Marin EC, Balbi AP, Francescato HD, et al. Renal structure and function evaluation of rats from dams that received increased sodium intake during pregnancy and lactation submitted or not to 5/6 nephrectomy. Ren Fail. 2008;30(5):547–555. doi: 10.1080/08860220802060448.
54. Bertram C, Trowern AR, Copin N, et al. The maternal diet during pregnancy programs altered expression of the glucocorticoid receptor and type 2 11 beta-hydroxysteroid dehydrogenase: potential molecular mechanisms underlying the programming of hypertension in utero. Endocrinology. 2001;142(7):2841–2853. doi: 10.1210/en.142.7.2841.
55. Feraille E, Doucet A. Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control. Physiol Rev. 2001;81(1):345–418.
56. Dagan A, Kwon HM, Dwarakanath V, Baum M. Effect of renal denervation on prenatal programming of hypertension and renal tubular transporter abundance. Am J Physiol Renal Physiol. 2008;295(1):F29–F34. doi: 10.1152/ajprenal.00123.2008.
57. Cuffe JSM, Burgess DJ, O’Sullivan L, et al. Maternal corticosterone exposure in the mouse programs sex-specific renal adaptations in the renin–angiotensin–aldosterone system in 6-month offspring. Physiol Rep. 2016;4(8):e12754. doi: 10.14814/phy2.12754.
58. Muller FL, Lustgarten MS, Jang Y, et al. Trends in oxidative aging theories. Free Radic Biol Med. 2007;43(4):477–503. doi: 10.1016/j.freeradbiomed.2007.03.034.
59. Boubred F, Saint-Faust M, Buffat C, et al. Developmental origins of chronic renal disease: an integrative hypothesis. Int J Nephrol. 2013;2013:346067. doi: 10.1155/2013/346067.
60. Feng D, Yang C, Geurts AM, et al. Increased expression of NAD(P)H oxidase subunit p67(phox) in the renal medulla contributes to excess oxidative stress and salt-sensitive hypertension. Cell Metab. 2012;15(2):201–208. doi: 10.1016/j.cmet.2012.01.003.
61. Evans RG, Majid DS, Eppel GA. Mechanisms mediating pressure natriuresis: what we know and what we need to find out. Clin Exp Pharmacol Physiol. 2005;32(5–6):400–409. doi: 10.1111/j.1440-1681.2005.04202.x.
62. Deng A, Miracle CM, Suarez JM, et al. Oxygen consumption in the kidney: effects of nitric oxide synthase isoforms and angiotensin II. Kidney Int. 2005;68(2):723–730. doi: 10.1111/j.1523-1755.2005.00450.x.
63. Kawarazaki H, Ando K, Shibata S, et al. Mineralocorticoid receptor-Rac1 activation and oxidative stress play major roles in salt-induced hypertension and kidney injury in prepubertal rats. J Hypertens. 2012;30(10):1977–1985. doi: 10.1097/HJH.0b013e3283576904.
64. Vieira LD, Lara LS, Silva PA, et al. Placental malnutrition changes the regulatory network of renal Na-ATPase in adult rat progeny: reprogramming by maternal alpha-tocopherol during lactation. Arch Biochem Biophys. 2011;505(1):91–97. doi: 10.1016/j.abb.2010.09.025.
65. Ojeda NB, Hennington BS, Williamson DT, et al. Oxidative stress contributes to sex differences in blood pressure in adult growth-restricted offspring. Hypertension. 2012;60(1):114–122. doi: 10.1161/Hypertensionaha.112.192955.
66. Reverte V, Tapia A, Baile G, et al. Role of angiotensin II in arterial pressure and renal hemodynamics in rats with altered renal development: age- and sex-dependent differences. Am J Physiol Renal Physiol. 2013;304(1):F33–F40. doi: 10.1152/ajprenal.00424.2012.
67. Bhatia K, Elmarakby AA, El-Remessey A, Sullivan JC. Oxidative stress contributes to sex differences in angiotensin II-mediated hypertension in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2012;302(2):R274–R282. doi: 10.1152/ajpregu.00546.2011.
68. Rexhaj E, Bloch J, Jayet PY, et al. Fetal programming of pulmonary vascular dysfunction in mice: role of epigenetic mechanisms. Am J Physiol Heart Circ Physiol. 2011;301(1):H247– H252. doi: 10.1152/ajpheart.01309.2010.
69. Vieira LD, Cabral EV, Santos FTJ, et al. Alpha-tocopherol prevents intrauterine undernutrition-induced oligonephronia in rats. Pediatr Nephrol. 2011;26(11):2019–2029. doi: 10.1007/s00467-011-1908-8.
70. Li J, Khodus GR, Kruusmagi M, et al. Ouabain protects against adverse developmental programming of the kidney. Nat Commun. 2010;1(4):1–7. doi: 10.1038/ncomms1043.
71. Khodus GR, Kruusmagi M, Li J, et al. Calcium signaling triggered by ouabain protects the embryonic kidney from adverse developmental programming. Pediatr Nephrol. 2011;26(9): 1479–1482. doi: 10.1007/s00467-011-1816-y.
72. Roghair RD, Wemmie JA, Volk KA, et al. Maternal antioxidant blocks programmed cardiovascular and behavioural stress responses in adult mice. Clin Sci (Lond). 2011;121(10):427–436. doi: 10.1042/CS20110153.
73. An WS, Kim HJ, Cho KH, Vaziri ND. Omega-3 fatty acid supplementation attenuates oxidative stress, inflammation, and tubulointerstitial fibrosis in the remnant kidney. Am J Physiol Renal Physiol. 2009;297(4):F895–903. doi: 10.1152/ajprenal.00217.2009.
74. Baum M. Developmental changes in proximal tubule NaCl transport. Pediatr Nephrol. 2008;23(2):185–194. doi: 10.1007/s00467-007-0569-0.
75. Manning J, Vehaskari VM. Postnatal modulation of prenatally programmed hypertension by dietary Na and ACE inhibition. Am J Physiol Regul Integr Comp Physiol. 2005;288(1):R80– 84. doi: 10.1152/ajpregu.00309.2004.
Рецензия
Для цитирования:
Ковтун О.П., Цывьян П.Б. Поражение почек и перинатальное программирование артериальной гипертензии: результаты экспериментальных исследований. Вопросы современной педиатрии. 2017;16(6):481-486. https://doi.org/10.15690/vsp.v16i6.1820
For citation:
Kovtun O.P., Tsyvian P.B. Kidney Disease and Perinatal Programming of Arterial Hypertension: the Results of Experimental Researches. Current Pediatrics. 2017;16(6):481-486. (In Russ.) https://doi.org/10.15690/vsp.v16i6.1820