Preview

Вопросы современной педиатрии

Расширенный поиск

КЛИНИКО-ФАРМАКОЛОГИЧЕСКИЕ ПОДХОДЫ К ОПТИМИЗАЦИИ РЕЖИМА ДОЗИРОВАНИЯ АНТИБАКТЕРИАЛЬНЫХ ПРЕПАРАТОВ В ПЕДИАТРИИ

https://doi.org/10.15690/vsp.v17i1.1855

Полный текст:

Аннотация

Рациональное использование антибактериальных препаратов у детей подразумевает адекватный выбор необходимого лекарственного средства, режима его дозирования и продолжительности лечения с целью достижения максимальной эффективности и минимизации токсических эффектов. Критическое значение для оптимизации режима дозирования имеет знание фармакокинетического и фармакодинамического профиля антибактериального препарата. Стратегия индивидуального выбора режима дозирования с учетом принципов фармакокинетики и фармакодинамики может быть особенно эффективна у пациентов с ожидаемо измененными параметрами фармакокинетики и при инфекциях, вызванных штаммами бактерий с низкой чувствительностью к антибиотикам. В обзоре изложены современные представления о показателях фармакокинетического и фармакодинамического профиля антибактериальных препаратов, наиболее часто используемых в педиатрии, и их связи с клинической эффективностью проводимой терапии.

Об авторах

Н. Б. Лазарева
Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский Университет)
Россия

Лазарева Наталья Борисовна - доктор медицинских наук, профессор кафедры клинической фармакологии и пропедевтики внутренних болезней.

119991, Москва, ул. Большая Пироговская, д. 2, стр. 4



Е. В. Ших
Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский Университет)
Россия


В. Н. Дроздов
Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский Университет)
Россия


Е. В. Реброва
Первый Московский государственный медицинский университет им. И.М. Сеченова (Сеченовский Университет)
Россия


Список литературы

1. Hersh AL, Shapiro DJ, Pavia AT, Shah SS. Antibiotic prescribing in ambulatory pediatrics in the United States. Pediatrics. 2011; 128(6):1053–1061. doi: 10.1542/peds.2011-1337.

2. Versporten A, Sharland M, Bielicki J, et al. The antibiotic resistance and prescribing in European Children project: a neonatal and pediatric antimicrobial web-based point prevalence survey in 73 hospitals worldwide. Pediatr Infect Dis J. 2013;32(6):e242–253. doi: 10.1097/INF.0b013e318286c612.

3. Демецкая А. Дети и лекарства // Фармацевт практик. — 2015. — №6. [Demetskaya A. Deti i lekarstva. Farmatsevt praktik. 2015;(6). (In Russ).] Доступно по: http://fp.com.ua/articles/8005-5013-2/ Ссылка активна на 12.01.2018.

4. Anderson BJ, Holford NH. Tips and traps analyzing pediatric PK data. Paediatr Anaesth. 2011;21(3):222–237. doi: 10.1111/j.1460-9592.2011.03536.x.

5. Downes KJ, Hahn A, Wiles J, et al. Dose optimisation of antibiotics in children: application of pharmacokinetics/pharmacodynamics in paediatrics. Int J Antimicrob Agents. 2014;43(3):223–230. doi: 10.1016/j.ijantimicag.2013.11.006.

6. Яковлев С.В. Фармакодинамические и фармакокинетические подходы к оптимизации применения ломефлоксацина // Антибиотики и химиотерапия. — 1998. — Т. 43. — № 10 — С. 42–45.

7. Trivedi A, Lee RE, Meibohm B. Applications of pharmacometrics in the clinical development and pharmacotherapy of anti-infectives. Expert Rev Clin Pharmacol. 2013;6(2):159–170. doi: 10.1586/ecp.13.6.

8. Craig WA. Pharmacodynamics of antimicrobials: general concepts and applications. In: Nightingale CH, Ambrose PG, Murakawa T, editors. Antimicrobial pharmacodynamics in theory and clinical practice. 2nd ed. New York: CRC Press; 2007. pp. 1–22.

9. Klinicheskaya farmakologiya. Uchebnik dlya vuzov. Ed by V.G. Kukes, D.A. Sychev. Moscow: GEOTAR-Media; 2015. 1024 p. (In Russ)

10. Spravochnik po antimikrobnoi terapii. Ed by R.S. Kozlov, A.V. Dekhnich. Smolensk: MAKMAKh; 2010. 415 p. (In Russ).

11. Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis. 1987;155(1):93–99. doi: 10.1093/infdis/155.1.93.

12. van Donge T, Pfister M, Bielicki J, et al. Quantitative analysis of gentamicin exposure in neonates and infants calls into question its current dosing recommendations. Antimicrob Agents Chemother. 2018:AAC.02004-17. doi: 10.1128/AAC.02004-17.

13. Mohamed AF, Nielsen EI, Cars O, Friberg LE. Pharmacokineticpharmacodynamic model for gentamicin and its adaptive resistance with predictions of dosing schedules in newborn infants. Antimicrob Agents Chemother. 2012;56(1):179–188. doi: 10.1128/AAC.00694-11.

14. Rao SC, Srinivasjois R, Hagan R, Ahmed M. One dose per day compared to multiple doses per day of gentamicin for treatment of suspected or proven sepsis in neonates. Cochrane Database Syst Rev. 2011(11):CD005091. doi: 10.1002/14651858.CD005091.pub3.

15. McDade EJ, Wagner JL, Moffett BS, Palazzi DL. Once-daily gentamicin dosing in pediatric patients without cystic fibrosis. Pharmacotherapy. 2010;30(3):248–253. doi: 10.1592/phco.30.3.248.

16. Novelli A, Mazzei T, Fallani S, et al. In vitro postantibiotic effect and postantibiotic leukocyte enhancement of tobramycin. J Chemother. 1995;7(4):355–362. doi: 10.1179/joc.1995.7.4.355.

17. Pagkalis S, Mantadakis E, Mavros MN, et al. Pharmacological considerations for the proper clinical use of aminoglycosides. Drugs. 2011;71(17):2277–2294. doi: 10.2165/11597020000000000-00000.

18. Salehifar E, Rafati MR. Extended-interval dosing of aminoglycosides in pediatrics: a narrative review. Journal of Pediatrics Review. 2015;3(2):e2652. doi: 10.17795/jpr-2652.

19. Rougier F, Claude D, Maurin M, Maire P. Aminoglycoside nephrotoxicity. Curr Drug Targets Infect Disord. 2004;4(2):153–162. doi: 10.2174/1568005043340858.

20. Beaubien AR, Desjardins S, Ormsby E, et al. Incidence of amikacin ototoxicity: a sigmoid function of total drug exposure independent of plasma levels. Am J Otolaryngol. 1989;10(4): 234–243. doi: 10.1016/0196-0709(89)90002-1.

21. Zappitelli M, Moffett BS, Hyder A, Goldstein SL. Acute kidney injury in non-critically ill children treated with aminoglycoside antibiotics in a tertiary healthcare centre: a retrospective cohort study. Nephrol Dial Transplant. 2011;26(1):144–150. doi: 10.1093/ndt/gfq375.

22. Bartal C, Danon A, Schlaeffer F, et al. Pharmacokinetic dosing of aminoglycosides: a controlled trial. Am J Med. 2003;114(3): 194–198. doi: 10.1016/s0002-9343(02)01476-6.

23. Nielsen EI, Sandstrom M, Honore PH, et al. Developmental pharmacokinetics of gentamicin in preterm and term neonates: population modelling of a prospective study. Clin Pharmacokinet. 2009;48(4):253–263. doi: 10.2165/00003088-20094804000003.

24. Streetman DS, Nafziger AN, Destache CJ, Bertino AS, Jr. Individualized pharmacokinetic monitoring results in less aminoglycoside-associated nephrotoxicity and fewer associated costs. Pharmacotherapy. 2001;21(4):443–451. doi: 10.1592/phco.21.5.443.34490.

25. Neely M, Jelliffe R. Practical, individualized dosing: 21st century therapeutics and the clinical pharmacometrician. J Clin Pharmacol. 2010;50(7):842–847. doi: 10.1177/0091270009356572.

26. Rey E, Treluyer JM, Pons G. Drug disposition in cystic fibrosis. Clin Pharmacokinet. 1998;35(4):313–329. doi: 10.2165/00003088199835040-00004.

27. Lam W, Tjon J, Seto W, et al. Pharmacokinetic modelling of a once-daily dosing regimen for intravenous tobramycin in paediatric cystic fibrosis patients. J Antimicrob Chemother. 2007;59(6): 1135–1140. doi: 10.1093/jac/dkm097.

28. Smyth AR, Bhatt J, Smyth AR. Once-daily versus multiple-daily dosing with intravenous aminoglycosides for cystic fibrosis. Cochrane Database Syst Rev. 2017;(3):CD002009. doi: 10.1002/14651858.CD002009.pub6.

29. Flume PA, Mogayzel PJ Jr, Robinson KA, et al. Cystic fibrosis pulmonary guidelines: treatment of pulmonary exacerbations. Am J Respir Crit Care Med. 2009;180(9):802–808. doi: 10.1164/rccm.200812-1845PP.

30. Wong G, Brinkman A, Benefield RJ, et al. An international, multicentre survey of beta-lactam antibiotic therapeutic drug monitoring practice in intensive care units. J Antimicrob Chemother. 2014;69(5):1416–1423. doi: 10.1093/jac/dkt523.

31. Reid S, Ngo CC, Massa HM, et al. Predominant bacteria detected from the middle ear fluid of children experiencing otitis media: a systematic review. PLoS One. 2016;11(3):e0150949. doi: 10.1371/journal.pone.0150949.

32. Craig WA, Andes D. Pharmacokinetics and pharmacodynamics of antibiotics in otitis media. Pediatr Infect Dis J. 1996;15(3): 255–259. doi: 10.1097/00006454-199603000-00015.

33. Parra A, Ponte C, Cenjor C, et al. Optimal dose of amoxicillin in treatment of otitis media caused by a penicillin-resistant pneumococcus strain in the gerbil model. Antimicrob Agents Chemother. 2002;46(3):859–862. doi: 10.1128/Aac.46.3.859-862.2002.

34. Canafax DM, Yuan Z, Chonmaitree T, et al. Amoxicillin middle ear fluid penetration and pharmacokinetics in children with acute otitis media. Pediatr Infect Dis J. 1998;17(2):149–156. doi: 10.1097/00006454-199802000-00014.

35. Gudnason T, Gudbrandsson F, Barsanti F, Kristinsson KG. Penetration of ceftriaxone into the middle ear fluid of children. Pediatr Infect Dis J. 1998;17(3):258–260. doi: 10.1097/00006454199803000-00022.

36. Roberts JA, Lipman J. Antibacterial dosing in intensive care: pharmacokinetics, degree of disease and pharmacodynamics of sepsis. Clin Pharmacokinet. 2006;45(8):755–773. doi: 10.2165/00003088-200645080-00001.

37. Kasiakou SK, Lawrence KR, Choulis N, Falagas ME. Continuous versus intermittent intravenous administration of antibacterials with time-dependent action — a systematic review of pharmacokinetic and pharmacodynamic parameters. Drugs. 2005;65(17): 2499–2511. doi: 10.2165/00003495-200565170-00006.

38. Courter JD, Kuti JL, Girotto JE, Nicolau DP. Optimizing bactericidal exposure for beta-lactams using prolonged and continuous infusions in the pediatric population. Pediatr Blood Cancer. 2009;53(3): 379–385. doi: 10.1002/pbc.22051.

39. Bauer KA, West JE, O’Brien JM, Goff DA. Extended-infusion cefepime reduces mortality in patients with Pseudomonas aeruginosa infections. Antimicrob Agents Chemother. 2013;57(7):2907–2912. doi: 10.1128/AAC.02365-12.

40. Mouton JW, Vinks AA. Continuous infusion of beta-lactams. Curr Opin Crit Care. 2007;13(5):598–606. doi: 10.1097/MCC.0b013e3282e2a98f.

41. Walker MC, Lam WM, Manasco KB. Continuous and extended infusions of beta-lactam antibiotics in the pediatric population. Ann Pharmacother. 2012;46(11):1537–1546. doi: 10.1345/aph.1R216.

42. Lowdin E, Odenholt I, Cars O. In vitro studies of pharmacodynamic properties of vancomycin against Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother. 1998; 42(10):2739–2744.

43. Rybak MJ. The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin Infect Dis. 2006;42 Suppl 1:S35–39. doi: 10.1086/491712.

44. Kullar R, Davis SL, Levine DP, Rybak MJ. Impact of vancomycin exposure on outcomes in patients with methicillin-resistant Staphylococcus aureus bacteremia: support for consensus guidelines suggested targets. Clin Infect Dis. 2011;52(8):975–981. doi: 10.1093/cid/cir124.

45. Liu C, Bayer A, Cosgrove SE, et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: executive summary. Clin Infect Dis. 2011;52(3):285–292. doi: 10.1093/cid/cir034.

46. Frymoyer A, Hersh AL, Benet LZ, Guglielmo BJ. Current recommended dosing of vancomycin for children with invasive methicillin-resistant Staphylococcus aureus infections is ina dequate. Pediatr Infect Dis J. 2009;28(5):398–402. doi: 10.1097/INF.0b013e3181906e40.

47. Frymoyer A, Hersh AL, Coralic Z, et al. Prediction of vancomycin pharmacodynamics in children with invasive methicillin-resistant Staphylococcus aureus infections: a Monte Carlo simulation. Clin Ther. 2010;32(3):534–542. doi: 10.1016/j.clinthera.2010.03.005.

48. Chhim RF, Arnold SR, Lee KR. Vancomycin dosing practices, trough concentrations, and predicted area under the curve in children with suspected invasive staphylococcal infections. J Pediatric Infect Dis Soc. 2013;2(3):259–262. doi: 10.1093/jpids/pis083.

49. Le J, Bradley JS, Murray W, et al. Improved vancomycin dosing in children using area under the curve exposure. Pediatr Infect Dis J. 2013;32(4):e155–e163. doi: 10.1097/INF.0b013e318286378e.

50. Frymoyer A, Guglielmo BJ, Hersh AL. Desired vancomycin trough serum concentration for treating invasive methicillin-resistant staphylococcal infections. Pediatr Infect Dis J. 2013;32(10): 1077–1079. doi: 10.1097/INF.0b013e318299f75c.

51. Hahn A, Vinks AA. Lower vancomycin serum trough concentrations might not be the answer. Pediatr Infect Dis J. 2013; 32(12):1403–1404. doi: 10.1097/Inf.0000000000000003.

52. McCracken M, Wong A, Mitchell R, et al. Molecular epidemiology of vancomycin-resistant enterococcal bacteraemia: results from the Canadian Nosocomial Infection Surveillance Program, 1999–2009. J Antimicrob Chemother. 2013;68(7):1505–1509. doi: 10.1093/jac/dkt054.

53. MacGowan AP. Pharmacokinetic and pharmacodynamic profile of linezolid in healthy volunteers and patients with Gram-positive infections. J Antimicrob Chemother. 2003;51 Suppl 2:17–25. doi: 10.1093/jac/dkg248.

54. Rayner CR, Forrest A, Meagher AK, et al. Clinical pharmacodynamics of linezolid in seriously ill patients treated in a compassionate use programme. Clin Pharmacokinet. 2003;42(15):1411–1423. doi: 10.2165/00003088-200342150-00007.

55. Jungbluth GL, Welshman IR, Hopkins NK. Linezolid pharmacokinetics in pediatric patients: an overview. Pediatr Infect Dis J. 2003;22(9):S153–S157. doi: 10.1097/01.inf.0000086954.43010.63.

56. Dong HY, Wang X, Dong YL, et al. Clinical pharmacokinetic/ pharmacodynamic profile of linezolid in severely ill Intensive Care Unit patients. Int J Antimicrob Agents. 2011;38(4):296–300. doi: 10.1016/j.ijantimicag.2011.05.007.

57. Santos RP, Prestidge CB, Brown ME, et al. Pharmacokinetics and pharmacodynamics of linezolid in children with cystic fibrosis. Pediatr Pulmonol. 2009;44(2):148–154. doi: 10.1002/ppul.20966.

58. Hiraki Y, Tsuji Y, Hiraike M, et al. Correlation between serum linezolid concentration and the development of thrombocytopenia. Scand J Infect Dis. 2012;44(1):60–64. doi: 10.3109/00365548.2011.608712.

59. Bauer RJ, Guzy S, Ng C. A survey of population analysis methods and software for complex pharmacokinetic and pharmacodynamic models with examples. AAPS Journal. 2007;9(1):e60–e83. doi: 10.1208/aapsj0901007.

60. Payen S, Serreau R, Munck A, et al. Population pharmacokinetics of ciprofloxacin in pediatric and adolescent patients with acute infections. Antimicrob Agents Chemother. 2003;47(10): 3170–3178. doi: 10.1128/Aac.47.10.3170-3178.2003.


Для цитирования:


Лазарева Н.Б., Ших Е.В., Дроздов В.Н., Реброва Е.В. КЛИНИКО-ФАРМАКОЛОГИЧЕСКИЕ ПОДХОДЫ К ОПТИМИЗАЦИИ РЕЖИМА ДОЗИРОВАНИЯ АНТИБАКТЕРИАЛЬНЫХ ПРЕПАРАТОВ В ПЕДИАТРИИ. Вопросы современной педиатрии. 2018;17(1):54-60. https://doi.org/10.15690/vsp.v17i1.1855

For citation:


Lazareva N.B., Chikh E.V., Drozdov V.N., Rebrova E.V. CLINICAL AND PHARMACOLOGICAL APPROACHES TO OPTIMIZE THE DOSING REGIMEN OF ANTIBACTERIAL DRUGS IN PEDIATRICS. Current pediatrics. 2018;17(1):54-60. (In Russ.) https://doi.org/10.15690/vsp.v17i1.1855

Просмотров: 451


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)