Preview

Вопросы современной педиатрии

Расширенный поиск

КИШЕЧНЫЙ МИКРОБИОЦЕНОЗ, ПИЩЕВАЯ ТОЛЕРАНТНОСТЬ И ПИЩЕВАЯ АЛЛЕРГИЯ. СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ

https://doi.org/10.15690/vsp.v13i3.1024

Полный текст:

Аннотация

В обзоре современной литературы подробно рассмотрено влияние бактериального фактора, в первую очередь — индигенной микрофлоры — на формирование пищевой толерантности, а также иммунного ответа ребенка в целом. Формирование микробиоценоза, пищевой и аутогенной толерантности происходит по общим законам. Особое значение в этом процессе имеет первичная колонизация кишечника и становление разнообразия микрофлоры, которое, как показывают результаты  последних исследований, заканчивается к 24 годам жизни ребенка. В обзоре рассмотрены основные факторы, действующие на формирование кишечной микробиоты у ребенка как антенатально и постнатально, так и на протяжении первых лет жизни, а также их взаимодействие. Подробно обсуждается влияние бактериального фактора на формирование пищевой толерантности и процессы сенсибилизации, а также механизмы этого влияния. Приводятся данные об особенностях состава кишечной микрофлоры у детей с пищевой аллергией, в т.ч. и результаты собственных исследований, посвященных микробиоценозу при пищевой аллергии у детей и разработке тактики ведения детей с даннолй патологией. Рассматриваются основные направления и возможности диетического влияния на состав биоценоза у детей с данной патологией.

Об авторах

С. Г. Макарова
Научный центр здоровья детей, Москва; Первый Московский государственный медицинский университет им. И.М. Сеченова
Россия


М. Н. Болдырева
«ДНК-Технология»ЗАО НПФ , Москва Институт иммунологии, Москва
Россия


Т. Е. Лаврова
НИИ питания, Москва
Россия


М. И. Петровская
Научный центр здоровья детей, Москва; Первый Московский государственный медицинский университет им. И.М. Сеченова
Россия


Список литературы

1. . Prescott S., Allen K. J. Food allergy: riding the second wave of allergy epidemic. Pediatr. Allergy & Immunology. 2011; 22 (1): 156–160.

2. Namazova-Baranova L. S. Allergiya u detei: ot teorii k praktike [Allergy in Children: from Theory to Practice]. Moscow, Soyuz pediatrov Rossii, 2010–2011. 668 p.

3. Prescott S. L., Breckler L. A., Witt C. S., Smith L., Dunstan J. A., Christiansen F. T. Allergic women show redused T helper type 1 alloresponses to fetal human leucocyte antigen mismatch during pregnancy. Clin. Exp. Immunol. 2010; 159: 65–72.

4. Lehmann I., Herberth G. Cord blood immune status: predicting health or allergy? Allergy. 2012; 67 (4): 445–448.

5. Strachan D. P. Hay fever, hygiene, and household size. BMJ. 1989; 299: 1259–1260.

6. Strachan D. P. Family size, infection and atopy: the first decade of the «hyhiene hypothesis». Thorax. 2000; 5 (Suppl. 1): 52–59.

7. Ramsey C. D., Celedon J. C. The hygiene hypothesis and asthma. Curr. Opin. Pulm. Med. 2005; 11: 14–20.

8. Turnbaugh P. J., Ley R. E., Hamady M. Fraser-Liggett C. M., Knight R., Gordon J. I. The human microbiome project. Nature. 2007; 449 (7164): 804–810.

9. Wade W. G. The oral microbiome in health and disease. Pharmacol. Res. 2013; 69 (1): 137–143. Doi: 10.1016/j.phrs. 2012.11.006. Epub 2012 Nov 28.

10. Kau A. L., Ahern P. P., Griffin N. W., Goodman A. L., Gordon J. I. Human nutrition, the gut microbiome and the immune system. Nature. 2011; 474 (7351): 327–336.

11. Goodacre R. Metabolomics of a superorganism. J. Nutr. 2007; 137 (Suppl. 1): 259–266.

12. Wylie K.M., Truty R.M., Sharpton T.J., Mihindukulasuriya K.A., Zhou Y., Gao H., Sodergren E., Weinstock G.M., Pollard K.S. Novel bacterial taxa in the human microbiome. PLoS One. 2012;7 (6): e35294. doi: 10.1371/journal.pone.0035294. Epub 2012 Jun

13. 13. Li K., Bihan M., Yooseph S., Methe B.A. Analyses of the microbial diversity across the human microbiome. PLoS One. 2012;7 (6): e32118. doi: 10.1371/journal.pone.0032118. Epub 2012 Jun 13.

14. Ursova N. I. Vopr. sovr. pediatrii — Current pediatrics. 2006; 1 (1): 51–56.

15. Feng T., Elson C. O. Adaptive immunity in the host-microbiota dialog. Mucosal Immunol. 2011; 4: 15–21.

16. Loranskaya I. D., Boldyreva M. N., Trofimov D.Yu. Farmateka — Pharmateca. 2013; 8: 61–66.

17. Shenderov B. A. Meditsinskaya mikrobnaya ekologiya i funktsional'noe pitanie. T. 1: Mikroflora cheloveka i zhivotnykh i ee funktsii [Medical Microbial Ecology and Functional Nutrition. Volume 1: Microflora of Human and Animal and its Functions]. Moscow, GRANT»». 1998. 288 s.

18. Nikitenko V. I., Saprykin V. B., Matveeva O. I., Blinova V. M. Novye dannye o mekhanizme formirovaniya i reguliruyushchei roli normal'noi mikroflory kishechnika u detei. Gastroenterologiya Sankt-Peterburga [Up-to-date Data on Progress Mechanism and Regulative Function of Normal Microflora of Chuldren. St. Petersburg Gastroenterology]. Mat-ly 6-go Mezhdunarodnogo Slavyano-Baltiiskogo nauchnogo foruma «Sankt-Peterburg-Gastro-2004». № 2–3 (Proceedings of 6th International Slavo-Baltic Scientific Forum “St. PetersburgGastro-2004”). Moscow, 2004. 101 p.

19. Sebra J. J. Influences of microbiota on intestinal immune system development. Am. J. Clin. Nutr. 1999; 69 (Suppl.): 1046–1051.

20. Stappenbeck T. S., Hooper L. V., Gordon J. I. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc. Natl. Acad. Sci. USA. 2002; 99: 15451–15455.

21. Jernberg C., Lofmark S., Edlund C., Jansson J. K. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007; 1: 56–66.

22. Kronman M. P., Zaoutis T. E., Haynes K., Feng R., Coffin S. E. Antibiotic exposure and IBD development among children: a population-based cohort study. Pediatrics. 2012; 130: 794–803.

23. Laubereau B., Filipiak-Pittroff B., von Berg A., Grubl A., Reinhardt D., Wichmann H. E., Koletzko S. GINI Study Group. Caesarean section and gastrointestinal symptoms, atopic dermatitis and sensitization during the first year of life. Arch. Dis. Childhood. 2004; 89: 993–997.

24. Renz-Polster H., David M. R., Buist A. S., Vollmer W. M., O'Connor E. A., Frazier E. A., Wall M. A. Caesarean section delivery and the risk of allergic disorders in childhood. Clin. Exp. Allergy. 2005; 35: 1466–1472.

25. Ismail I. H., Oppedisano F., Joseph S. J., Boyle R. J., Licciardi P. V., Robins-Browne R. M., Tang M. L. Reduced gut microbial diversity in early life is associated with later development of eczema but not atopy in high-risk infants. Pediatr. Allergy Immunol. 2012; 23 (7): 674–681. Doi: 10.1111/j.1399-3038.2012.01328.x.

26. Koenig J. E., Spor A., Scalfone N., Fricker A. D., Stombaugh J., Knight R., Angenent L. T., Ley R. E. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. USA. 2011; 108 (Suppl. 1): 4578–4585.

27. Faria A. M. C., Weiner H. L. Oral tolerance. Immunol. Rev. 2005; 206: 232–259.

28. Rescigno M., Di S. A. Dendritic cells in intestinal homeostasis and disease. J. Clin. Invest. 2009; 119 (9): 2441–2450.

29. Atarashi K., Nishimura J., Shima T., Umesaki Y., Yamamoto M., Onoue M., Yagita H., Ishii N., Evans R., Honda K., Takeda K. ATP drives lamina propria TH17 cell differentiation. Nature. 2008; 455 (7214): 808–812.

30. Mora J. R., Iwata M., Eksteen B., Song S. Y., Junt T., Senman B., Otipoby K. L., Yokota A., Takeuchi H., Ricciardi-Castagnoli P., Rajewsky K., Adams D. H., von Andrian U. H. Generation of guthoming IgA-secreting B cells by intestinal dendritic cells. Science. 2006; 314 (5802): 1157–1160.

31. Sun C. M., Hall J. A., Blank R. B., Bouladoux N., Oukka M., Mora J. R., Belkaid Y. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Medicine. 2007; 204 (8): 1775–1785.

32. Iliev I. D., Spadoni I., Mileti E., Matteoli G., Sonzogni A., Sampietro G. M., Foschi D., Caprioli F., Viale G., Rescigno M. Human intestinal epithelial cells promote the differentiation of tolerogenic dendritic cells. Gut. 2009; 58 (11): 1481–1489.

33. Akdis C. A., Blaser K., Akdis M. Genes of tolerance. Allergy. 2004; 59: 897–913.

34. Peng H. J., Su S. N., Tsai J. J., Tsai L. C., Kuo H. L., Kuo S. W. Effect of ingestion of cows milk hydrolysed formulas on whey proteinspecific Th2 immune responses in naive and sensitised mice. Clin. Exp. Allergy. 2004; 34: 663–670.

35. Karlsson M. R., Rugtveil J., Brandtzaeg P. Allergen-responsive CD41CD251 regulatory T cells in children who have outgrown cow's milk allergy. J. Exp. Med. 2004; 199: 1679–1688.

36. Sudo N., Sawamura S. A., Tanaka K., Aiba Y., Kubo C., Koga Y. The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J. Immunol. 1997; 159 (4): 1739–1745.

37. Tanaka K., Ishikawa H. Role of intestinal bacterial flora in oral tolerance induction. Histology & Histopathology. 2004; 19 (3): 907–914.

38. Oyama N., Sudo N., Sogawa H., Kubo C. Antibiotic use during infancy promotes a shift in the T (H)1/T (H)2 balance toward T(H)2-dominant immunity in mice. J. Allergy Clin. Immunol. 2001; 107 (1): 153–159.

39. Sudo N., Yu X. N., Aiba Y., Oyama N., Sonoda J., Koga Y., Kubo C. An oral introduction of intestinal bacteria prevents the development of a long-term Th2-skewed immunological memory induced by neonatal antibiotic treatment in mice. Clin. Exp. Allergy. 2001; 32 (7): 1112–1116.

40. Weng M., Walker W. A. The role of gut microbiota in programming the immune phenotype. J. Dev. Orig. Health Dis. 2013; 4: 203–214.

41. Chen Y., Tnobe J., Marks R., Gonnella P., Kuchroo V. K., Weiner H. L. Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature. 1995; 376: 177–180.

42. Walker W. Initial intestinal colonization in the human infant and immune homeostasis. Ann. Nutr. Metab. 2013; 63 (Suppl. 2): 8–15.

43. Dreskin S. C., Ayars A., Jin Y., Atkins D., Leo H. L., Song B. Association of genetic variants of CD14 with peanut allergy and elevated IgE levels in peanut allergic individuals. Ann. Allergy, Asthma & Immunol. 2011; 116: 170–172.

44. Buckova D., Holla L. I., Znojil V., Vasku A. Polymorphisms of the CD14 gene and atopic phenotypes in Czech patients with IgEmediated allergy. J. Hum. Genetics. 2006; 51 (11): 977–983.

45. Campos E., Shimojo N., Inoue Y., Arima T., Suzuki S., Tomiita M., Matsuura T., Hata A., Suzuki Y., Aoyagi M., Kohno Y. No association of polymorphisms in the 5' region of the CD14 gene and food allergy in a Japanese population. Allergol. Int. 2007; 56 (1): 23–27.

46. Galli E., Ciucci A., Cersosimo S., Pagnini C., Avitabile S., Mancino G., Delle Fave G., Corleto V. D. Eczema and food allergy in an Italian pediatric cohort: no association with TLR-2 and TLR-4 polymorphisms. Int. J. Immunopathol. Pharmacol. 2010; 23 (2): 671–675.

47. Prescott S. L., Noakes P., Chow B. W., Breckler L., Thornton C. A., Hollams E. M., Ali M., van den Biggelaar A. H., Tulic M. K. Presymptomatic differences in Toll-like receptor function in infants who have allergy. J. Allergy Clin. Immunol. 2008; 122 (2): 391–399.

48. Yu L. C. H., Montagnac G., Yang P. C., Conrad D. H., Benmerah A., Perdue M. H. Intestinal epithelial CD23 mediates enhanced antigen transport in allergy: evidence for novel splice forms. Am. J. Physiol. 2003; 285 (1): 223–234.

49. Adel-Patient K., Bernard H., Ah-Leung S., Creminon C., Wal J. M. Peanut- and cow's milk-specific IgE, Th2 cells and local anaphylactic reaction are induced in Balb/c mice orally sensitized with cholera toxin. Allergy. 2005; 60 (5): 658–664.

50. Kosecka U., Marshall J. S., Crowe S. E., Bienenstock J., Perdue M. H. Pertussis toxin stimulates hypersensitivity and enhances nerve-mediated antigen uptake in rat intestine. Am. J. Physiol. 1994; 267 (5): 745–753.

51. Gagliardi M. C., Sallusto F., Marinaro M., Vendetti S., Riccomi A., De M. T. Effects of the adjuvant cholera toxin on dendritic cells: stimulatory and inhibitory signals that result in the amplification of immune responses. Int. J. Med. Microbiol. 2001; 291 (6–7): 571–575.

52. Smit J. J., Bol-Schoenmakers M., Hassing I., Fiechter D., Boon L., Bleumink R., Pieters R. H. The role of intestinal dendritic cells subsets in the establishment of food allergy. Clin. Exp. Allergy. 2011; 41 (6): 890–898.

53. Feng B. S., Chen X., He S. H., Zheng P. Y., Foster J., Xing Z., Bienenstock J., Yang P. C. Disruption of T-cell immunoglobulin and mucin domain molecule (TIM)-1/TIM4 interaction as a therapeutic strategy in a dendritic cell-induced peanut allergy model. J. Allergy Clin. Immunol. 2008; 122 (1): 55–61.

54. Meyers J. H., Chakravarti S., Schlesinger D., Illes Z., Waldner H., Umetsu S. E., Kenny J., Zheng X. X., Umetsu D. T., DeKruyff R. H., Strom T. B., Kuchroo V. K. TIM-4 is the ligand for TIM-1, and the TIM- 1-TIM-4 interaction regulates T cell proliferation. Nature Immunol. 2005; 6 (5): 455–464.

55. Yang P. C., Xing Z., Berin C. M., Soderholm J. D., Feng B. S., Wu L., Yeh C. TIM-4 expressed by mucosal dendritic cells plays a critical role in food antigen-specific Th2 differentiation and intestinal allergy. Gastroenterology. 2007; 133 (5): 1522–1533.

56. Kalliomaki M., Kirjavainen P., Eerola E., Kero P., Salminen S., Isolauri E. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J. Allergy Clin. Immunol. 2001; 107 (1): 129–134.

57. Songjinda P., Nakayama J., Tateyama A., Tanaka S., Tsubouchi M., Kiyohara C., Shirakawa T., Sonomoto K. Differences in developing intestinal microbiota between allergic and nonallergic infants: a pilot study in Japan. Biosci. Biotechnol. Biochem. 2007; 71 (9): 2338–2342.

58. Makarova S. G. Obosnovanie i otsenka effektivnosti dietoterapii pri pishchevoi allergii u detei v razlichnye vozrastnye periody. Avtoref. dis. … dokt. med. nauk [Objectives and Effectiveness Assessment of Nutritional Management in Children of Different Age. Author’s abstract]. Moscow, 2008. 60 p.

59. Pishchevaya allergiya. Ruk-vo dlya vrachei. Pod red. A. A. Baranova, L. S. Namazovoi-Baranovoi, T. E. Borovik, S. G. Makarovoi [Food Allergy. Guideline. Edited by A. A. Baranov, L. S. Namazova-Baranova, T. E. Borovik, S. G. Makarova]. Moscow, Pediatr”, 2013. 160 p.

60. Diagnosis and rationale for action against cow's milk allergy (DRACMA) guidelines. World Allergy Organization. 2010.

61. Diagnostic approach and management of cow’s-milk protein allergy in infants and children: ESPGHAN GI committee practical guidelines. J. Pediatr. Gastroenterol. Nutr. 2012; 55 (2): 221–229.

62. Bruni F. M., Piacentini G. L., Peroni D. G., Bodini A., Fasoli E., Boner A. L. Cow's milk allergic children can present sensitisation to probiotics. Acta Paediatr. 2009; 98 (2): 321–323.

63. Boyle R. J., Bath-Hextall F. J., Leonardi-Bee J., Murrell D. F., Tang M. L. Probiotics for treating eczema. Cochr. Database Syst. Rev. 2008; 4: CD006135.

64. Gruber C., van Stuijvenberg M., Mosca F., Moro G., Chirico G., Braegger C. P., Riedler J., Boehm G., Wahn U. MIPS 1 Working Group. Reduced occurrence of early atopic dermatitis because of immunoactive prebiotics among low-atopy-risk infants. J. Allergy Clin. Immunol. 2010; 126: 791–797.


Для цитирования:


Макарова С.Г., Болдырева М.Н., Лаврова Т.Е., Петровская М.И. КИШЕЧНЫЙ МИКРОБИОЦЕНОЗ, ПИЩЕВАЯ ТОЛЕРАНТНОСТЬ И ПИЩЕВАЯ АЛЛЕРГИЯ. СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ. Вопросы современной педиатрии. 2014;13(3):21-29. https://doi.org/10.15690/vsp.v13i3.1024

For citation:


Makarova S.G., Boldyreva M.N., Lavrova Т.E., Petrovskaya М.I. INTESTINAL MICROBIOCENOSIS, FOOD TOLERANCE AND FOOD ALLERGY. CURRENT STATE OF A PROBLEM. Current Pediatrics. 2014;13(3):21-29. (In Russ.) https://doi.org/10.15690/vsp.v13i3.1024

Просмотров: 540


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)