Preview

Вопросы современной педиатрии

Расширенный поиск

РОЛЬ КОММЕНСАЛЬНЫХ МИКРООРГАНИЗМОВ В ФОРМИРОВАНИИ ИММУННОЙ СИСТЕМЫ У ДЕТЕЙ, И НОВЫЕ ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ ПРОБИОТИКОВ

https://doi.org/10.15690/vsp.v13i2.969

Полный текст:

Аннотация

Микроорганизмы, населяющие кожные покровы и слизистые оболочки человека, многочисленны и разнообразны. Одной из функций микробиоты является модуляция деятельности иммунной системы, при этом участие микроорганизмов в формировании иммунной системы ребенка начинается на этапе внутриутробного развития. Первичная колонизация, происходящая в постнатальном периоде, зависит от влияния многих факторов, в первую очередь — от вида вскармливания. В числе других причин, влияющих на формирование микрофлоры организма, рассматривают факторы, связанные с современным образом жизни. В этой области опубликован ряд научных трудов, развивающих концепцию «гигиенической теории», связывающей рост аллергических и аутоиммунных болезней со снижением контактов макрооганизма с микроорганизмами в детском возрасте. Таким образом, представляет значительный научный и практический интерес применение пробиотических микробов с целью модуляции иммунной системы и уменьшения негативного влияния факторов, угнетающих собственную микрофлору организма или мешающих ее становлению. В связи с этим наиболее перспективным для детей является применение Bifidobacterium, которые доминируют в стуле младенцев, находящихся на грудном вскармливании, и имеют наиболее высокий уровень безопасности. Ряд научных исследований демонстрирует доказанную эффективность пробиотических препаратов в профилактике острых инфекций дыхательных путей и в профилактике и лечении аллергологической патологии у детей. Представленный обзор литературы включает анализ научных публикаций, посвященных роли микрофлоры в формировании иммунной системы ребенка, и возможности применения пробиотиков в области иммунокоррекции.

Ключевые слова


Об авторе

С. В. Ильина
Иркутский государственный медицинский университет
Россия


Список литературы

1. Fujimura K. E., Slusher N. A., Cabana S. V. Lynch Role of the gut microbiota in defining human health. Exp. Rev. Anti Infect. Ther. 2010; 8 (4): 435–454.

2. Chow J., Mazmanian S. K. Getting the bugs out of the immune system: do bacterial microbiota «fix» intestinal T cell responses? Cell Host Microbe. 2009; 5 (1): 8–12.

3. O'Hara A. M., Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006; 7 (7): 688–693.

4. Yan F., Polk D. B. Probiotic bacterium prevents cytokine-induced apop tosis in intestinal epithelial cells. J. Biol. Chem. 2002; http://www. jbc.org/lookup/doi/10.1074/jbc.M207050200

5. Otte J. M., Podolsky D. K. Functional modulation of enterocytes by gram-positive and gram-negative microorganisms. Am. J. Physiol. Gastrointest. Liver Physiol. 2004; 286 (4): 613–626.

6. Gill H. S., Rutherfurd K. J., Cross M. L., Gopal P. K. Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. Am. J. Clin Nutr. 2001; 74: 833–839.

7. Sheih Y. H., Sheih Y. H., Chiang B. L., Wang L. H., Liao C. K., Gill H. S. Systemic immunity-enhancing effects in healthy subjects following dietary consumption of the lactic acid bacterium Lactobacillus rhamnosus HN001. J. Am. Coll. Nutr. 2001; 20: 149–156.

8. Bierne H., Travier L., Mahlakoiv T., Tailleux L., Subtil A., Lebreton A., Paliwal A., Gicquel B., Staeheli P., Lecuit M., Cossart P. Activation of type III interferon genes by pathogenic bacteria in infected epithelial cells and mouse placenta. PLoS One. 2012; 7 (6): 39080.

9. Johansson M. A., Saghafian-Hedengren S., Haileselassie Y., Roos S., Troye-Blomberg M., Nilsson C., Sverremark-Ekstrom E. Early-life gut bacteria associate with IL-4-, IL-10-and IFN- production at two years of age. PLoS One. 2012; 7 (11): 49315.

10. Macpherson A. J., Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science. 2004; 303: 1662–1665.

11. Haghighi H. R., Gong J., Gyles C. L., Hayes M. A., Zhou H., Sanei B., Chambers J. R., Sharif S. Probiotics stimulate production of natural antibodies in chickens. Clin. Vaccine Immunol. 2006; 13: 9975–9980.

12. Ruchkina I. N., Parfenov A. I., Tsaregorodtseva T. M. Gastro ente rologija Sankt-Peterburga — Gastroenterology of St. Petersburg. 2007; 1–2: 11–14.

13. Lammers K. M., Brigidi P., Vitali B., Gionchetti P., Rizzello F., Caramelli E., Matteuzzi D., Campieri M. Immunomodulatory effects of probiotic bacteria DNA: IL-1 and IL-10 response in human peripheral blood mononuclear cells. FEMS Immunol. Med. Microbiol. 2003; 38 (2): 165–172.

14. Rachmilewitz D., Katakura K., Karmeli F., Hayashi T., Reinus C., Rudensky B., Akira S., Takeda K., Lee J., Takabayashi K., Raz E. Tolllike receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology. 2004; 126: 520–528.

15. Bai A. P., Ouyang Q., Zhang W., Wang C. H., Li S. F. Probiotics inhibit TNF-alpha-induced interleukin-8 secretion of HT29 cells. World J. Gastroenterol. 2004; 10: 455–457.

16. Sturm A., Rilling K., Baumgart D. C., Gargas K., AbouGhazale T., Raupach B., Eckert J., Schumann R. R., Enders C., Sonnenborn U., Wiedenmann B., Dignass A. U. Escherichia coli Nissle 1917 distinctively modulates T-cell cycling and expansion via toll-like receptor 2 signaling. Infect. Immunol. 2005; 73: 1452–1465.

17. Ogawa T., Asai Y., Tamai R., Makimura Y., Sakamoto H., Hashikawa S., Yasuda K. Natural killer cell activities of synbiotic Lactobacillus casei ssp. casei in conjunction with dextran. Clin. Exp. Immunol. 2006; 143: 103–109.

18. Takeda K., Suzuki T., Shimada S. I., Shida K., Nanno M., Okumura K. Interleukin-12 is involved in the enhancement of human natural killer cell activity by Lactobacillus casei Shirota. Clin. Exp. Immunol. 2006; 146: 109–115.

19. Pochard P., Gosset P., Grangette C., Andre C., Tonnel A. B., Pestel J., Mercenier A. Lactic acid bacteria inhibit TH2 cytokine production by mononuclear cells from allergic patients. J. Allergy Clin. Immunol. 2002; 110: 617–623.

20. Prioult G., Pecquet S., Fliss I. Stimulation of interleukin- 10 production by acidic beta-lactoglobulin-derived peptides hydrolyzed with Lactobacillus paracasei NCC2461 peptidases. Clin. Diagn. Lab. Immunol. 2004; 11: 266–271.

21. Debarry J., Garn H., Hanuszkiewicz A., Dickgreber N., Blumer N., von Mutius E., Bufe A., Gatermann S., Renz H., Holst O., Heine H. Acinetobacter lwoffii and Lactococcus lactis strains isolated from farm cowsheds possess strong allergyprotective properties. J. Allergy Clin. Immunol. 2007; 119 (6): 1514–1521.

22. Moore K. W., Malefyt R. de Waal, Coffman R. L., O'Garra A. Interleukin-10 and the interleukin-10 receptor. Ann. Rev. Immunol. 2001; 19: 683–765.

23. McCarthy J., O'Mahony L., O'Callaghan L., Sheil B., Vaughan E. E., Fitzsimons N., Fitzgibbon J., O'Sullivan G. C., Kiely B., Collins J. K. Double blind, placebo controlled trial of two probiotic strains in interleukin 10 knockout mice and mechanistic link with cytokine balance. Gut. 2003; 52: 975–980.

24. Pena J. A., Li S. Y., Wilson P. H., Thibodeau S. A., Szary A. J., Versalovic J. Genotypic and phenotypic studies of murine intestinal lactobacilli: species differences in mice with and without colitis. Appl. Environ. Microbiol. 2004; 70: 558–568.

25. Drakes M., Blanchard T., Czinn S. Bacterial probiotic modulation of dendritic cells. Infect. Immun. 2004; 72: 3299–3309.

26. Hart A. L., Lammers K., Brigidi P., Vitali B., Rizzello F., Gionchetti P., Campieri M., Kamm M. A., Knight S. C., Stagg A. J. Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut. 2004; 53: 1602–1609.

27. Smits H. H., Engering A., van der Kleijde D., Jong E. C., Schipper K., van Capel T. M., Zaat B. A., Yazdanbakhsh M., Wierenga E. A., van Kooyk Y. Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J. Allergy Clin. Immunol. 2005; 115: 1260–1267.

28. Evrard B., Coudeyras S., Dosgilbert A., Charbonnel N., Alame J., Tridon A., Forestier C. Dose-dependent immunomodulation of human dendritic cells by the probiotic Lactobacillus rhamnosus Lcr35. PLoS One. 2011; 6 (4): 18735.

29. Carol M., Borruel N., Antolin M., Llopis M., Casellas F., Guarner F., Malagelada J. R. Modulation of apoptosis in intestinal lymphocytes by a probiotic bacteria in Crohn's disease. J. Leukoc. Biol. 2006; 79: 917–922.

30. Delcenserie V., Martel D., Lamoureux M., Amiot J., Boutin Y., Roy D. Immunomodulatory effects of probiotics in the intestinal tract. Mol. Biol. 2008; 10: 37–54.

31. Probiotics and prebiotics. Practice Guideline World Gastroenterology Organisation. 2008; http://www.worldgastroen terology. org/assets/downloads/en/pdf/guidelines/19_probiotics_ prebiotics.pdf

32. Schaub B., Liu J., Hoppler S., Schleich I., Huehn J., Olek S., Wieczorek G., Illi S., von Mutius E. Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells. J. Allergy Clin. Immunol. 2009; 123 (4): 774–782.

33. Aichbhaumik N., Zoratti E. M., Strickler R., Wegienka G., Ownby D. R., Havstad S., Johnson C. C. Prenatal exposure to household pets influences fetal immunoglobulin E production. Clin. Exp. Allergy. 2008; 38 (11): 1787–1794.

34. Wegienka G., Havstad S., Zoratti E. M., Woodcroft K. J., Bobbitt K. R., Ownby D. R., Johnson C. C. Regulatory T cells in prenatal blood samples: variability with pet exposure and sensitization. J. Reprod. Immunol. 2009; 81 (1): 74–81.

35. McKeever T. M., Lewis S. A., Smith C., Hubbard R. The importance of prenatal exposures on the development of allergic disease: a birth cohort study using the West Midlands general practice database. Am. J. Respir. Crit. Care Med. 2002; 166 (6): 827–832.

36. Ege M. J., Bieli C., Frei R., van Strien R. T., Riedler J., Ublagger E., Schram-Bijkerk D., Brunekreef B., van Hage M., Scheynius A., Pershagen G., Benz M. R., Lauener R., von Mutius E., BraunFahrlander C. Prenatal farm exposure is related to the expression of receptors of the innate immunity and to atopic sensitization in schoolage children. J. Allergy Clin. Immunol. 2006; 117 (4): 817–823.

37. DiGiulio D. B. Diversity of microbes in amniotic fluid. Semin. Fetal Neonat. Med. 2012; 17 (1): 2–11.

38. Leon R., Silva N., Ovalle A., Chaparro A., Ahumada A., Gajardo M., Martinez M., Gamonal J. Detection of Porphyromonas gingivalis in the amniotic fluid in pregnant women with a diagnosis of threatened premature labor. J. Periodontol. 2007; 78 (7): 1249–1255.

39. Fernandez L., Langa S., Martin V., Maldonado A., Jimenez E., Martin R., Rodriguez J. M. The human milk microbiota: Origin and potential roles in health and disease. Pharmacological Res. 2013; 69: 1–10.

40. Hunt K. M., Foster J. A., Forney L. J., Schutte U. M. E., Beck D. L., Abdo Z., Fox L. K., Williams J. E., McGuire M. K., McGuire M. A. Characterization of the diversity and temporal stability of bacterial communities inhuman milk. PLoS ONE. 2011; 6: 21313.

41. Rescigno M., Urbano M., Valzasina B., Francolin M., Rotta G., Bonasio R., Granucci F., Kraehenbuhl J. P., Ricciardi-Castagnoli P. Dendritic cells express tight junction proteins and penetrate gut epithelialmonolayers to sample bacteria. Nature Immunology. 2001; 2: 361–367. 42. Roitt I. Essential immunology. Oxford: Blackwell Scientific Publications. 2001. 546 p.

42. Langa S., Maldonado A., Delgado S., Martin R., Martin V., Jimenez E., Ruiz-Barba J. L., Mayo B., Connor R. I., Suarez J. E., Rodriguez J. M. Characterization of Lactobacillus salivarius CECT 5713, a strain isolated from human milk: from genotype to phenotype. Appl. Microbiol. Biotechnol. 2012; 94: 1279–1287.

43. Perez P. F., Dore J., Leclerc M., Levenez F., Benyacoub J., Serrant P., Segura-Roggero I., Schiffrin E. J., Donnet-Hughes A. Bacterial imprinting of the neonatal immune system: lessons from maternal cells. Pediatrics. 2007; 119: 724–732.

44. Jimenez E., Fernandez L., Maldonado A., Martin R., Olivares M., Xaus J., Rodriguez J. M. Oral administration of lactobacilli strains isolated from breast milk as an alternative for the treatment of infectious mastitis during lactation. Appl. Environ. Microbiol. 2008; 74: 4650–4655.

45. Arroyo R., Martin V., Maldonado A., Jimenez E., Fernandez L., Rodriguez J. M. Treatment of infectious mastitis during lactation: antibiotics versus oral administration of lactobacilli isolated from breast milk. Clin. Infect. Dis. 2010; 50: 1551–1558.

46. Harmsen H. J., Wildeboer-Veloo A. C., Raangs G. C., Wagendorp A. A., Klijn N., Bindels J. G., Welling G. W. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J. Pediatr. Gastroenterol. Nutr. 2000; 30 (1): 61–67.

47. Guarner F., Malagelada J. R. Gut flora in health and disease. Lancet. 2003; 361: 512–519.

48. Penders J., Thijs C., Vink C., Stelma F. F., Snijders B., Kummeling I., van den Brandt, Stobberingh E. E. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006; 118 (2): 511–521.

49. Strachan D. Family size, infection and atopy: The first decade of the 'hygiene hypothesis'. Thorax. 2000; 55 (Suppl. 1): 2–10.

50. Rook, G. A., Martinelli R., Brunet L. R. Innate immune responses to mycobacteria and the downregulation of atopic responses. Curr. Opin. Allergy Clin. Immunol. 2003; 3 (5): 337–342.

51. Okada H., Kuhn C., Feillet H., Bach J.-F. The «hygiene hypothesis» for autoimmune and allergic diseases: an update. Clin. Exp. Immunol. 2010; 160 (1): 1–9.

52. Savilov Ye. D., Anganova Ye. V., Il'ina S. V., Astaf'yev V. A., Stepanenko L. A., Zhdanova S. N. Proyavleniye infektsionnoy patologii v usloviyakh tekhnogennogo zagryazneniya okruzha yushchey sredy [Displays of Infectious Pathology in Conditions of Technogenic Environmental Pollution]. Irkutsk: RIO GIUV. 2007. 85 p.

53. Kolesnikova S. M., Stupak V. S., Vit'ko A. V., Balabkin I. V. Dal'nevostochnyy meditsinskiy zhurnal — Far Eastern Medical Journal. 2011; 4: 37–40.

54. Tulyakova O. V., Avdeyeva M. S., Chetverikova Ye. V. Molodoy uchenyy — Young Scientist. 2012; 2: 328–331.

55. Hao Q., Lu Z., Dong B. R., Huang C. Q., Wu T. Probiotics for preventing acute upper respiratory tract infections. Cochr. Database Syst. Rev. 2011; 9: CD006895.

56. Osborn D. A., Sinn J. K. H. Probiotics in infants for prevention of allergic disease and food hypersensitivity. Cochr. Database Syst. Rev. 2007; 4: CD006475.

57. Isolauri E., Arvola T., Sutas Y., Moilanen E., Salminen S. Probiotics in the management of atopic eczema. Clin. Exp. Allergy. 2000; 30 (11): 1604–1610.

58. Holscher H. D., Czerkies L. A., Cekola P., Litov R., Benbow M., Santema S., Alexander D. D., Perez V., Sun S., Saavedra J. M., Tappen den K. A. Bifidobacterium lactis BB12 enhances intestinal antibody response in formula-fed infants: a randomized, doubleblind, controlled trial. JPEN J. Parenter. Enteral. Nutr. 2012; 36 (Suppl. 1): 106–117.

59. Park J. H., Um J. I., Lee B. J., Goh J. S., Park S. Y., Kim W. S., Kim P. H. Encapsulated Bifidobacterium bifidum potentiates intesti nal IgA. Cell Immunol. 2002; 219: 22–27.

60. Kulkarni N., Reddy B. S. Inhibitory effect of Bifidobacterium longum cultures on the azoxymethane-induced aberrant crypt foci formation and fecal bacterial glucuronidase. Proc. Soc. Exp. Biol. Med. 1994; 207: 278–283.

61. Arunachalam K., Gill H. S., Chandra R. K. Enhancement of natural immune function by dietary consumption of Bifidobacterium lactis (HN019). Eur. J Clin. Nutr. 2000; 54: 263–267.

62. Ruiz P. A., Hoffmann M., Szcesny S., Blaut M., Haller D. Innate mechanisms for Bifidobacterium lactis to activate transient proinflammatory host responses in intestinal epithelial cells after the colonization of germ-free rats. Immunology. 2005; 115: 441–450.

63. Rigby R. J., Knight S. C., Kamm M. A., Stagg A. J. Production of interleukin (IL)-10 and IL-12 by murine colonic dendritic cells in response to microbial stimuli. Clin. Exp. Immunol. 2005; 139: 245–256.


Для цитирования:


Ильина С.В. РОЛЬ КОММЕНСАЛЬНЫХ МИКРООРГАНИЗМОВ В ФОРМИРОВАНИИ ИММУННОЙ СИСТЕМЫ У ДЕТЕЙ, И НОВЫЕ ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ ПРОБИОТИКОВ. Вопросы современной педиатрии. 2014;13(2):20-27. https://doi.org/10.15690/vsp.v13i2.969

For citation:


Il'ina S.V. COMMENSAL MICROORGANISMS IN DEVELOPMENT OF THE CHILDREN IMMUNE SYSTEM AND NEW FACILITIES OF PROBIOTICS USAGE. Current Pediatrics. 2014;13(2):20-27. (In Russ.) https://doi.org/10.15690/vsp.v13i2.969

Просмотров: 469


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)