Vitamins А, С and D — Essential Trio for Infants
https://doi.org/10.15690/vsp.v18i3.2031
Abstract
Administration of essential vitamins A, C and D in vitamin-mineral complex in common dosage is efficient for immunity formation, harmonious physical and neuropsychic development, rickets prevention. Dosage of components at the physiological daily maintenance in basic vitamin complexes for infants is integral for nursing mother supplementation and fortification of the food used for infant weaning. If necessary, and specifically in immature infants, the basic vitamin complex (vitamins A, C and D) can be extended with other required micronutrients (vitamin D, for example, can be extended up to 1000 ME). It depends on feeding type, intake of vitamin-mineral complexes for nursing mothers, seasonal prevalence, region and many other factors.
Keywords
About the Authors
Evgenia V. ShikhRussian Federation
Disclosure of interest: work in collaboration with Pfizer Innovations LLC
Anna A. Makhova
Russian Federation
Disclosure of interest: work in collaboration with Pfizer Innovations LLC
Ekaterina I. Alekseeva
Russian Federation
Disclosure of interest: receiving research grants from Roche, Pfizer, Centocor, Novartis companies
References
1. Jennewein MF, Abu-Raya B, Jiang Y. Transfer of maternal immunity and programming of the newborn immune system. Semin Immunopathol. 2017;39(6):605–613. doi: 10.1007/s00281-017-0653-x.
2. Shcheplyagina LA, Kruglova IV. Vozrastnye osobennosti immuniteta u detej. Russkij medicinskij zhurnal. 2009;17(23):1564–1569. (In Russ).
3. Kon’ IYa, Shilina NM. Vitaminnaya nedostatochnost’ u detej. Practitioner. 2005;(7):64–70. (In Russ).
4. Shikh EV, Makhova AA, Emelyashenkov EE. Intake of a vitaminmineral complex is a rational way to make up a calcium deficiency in conditions of insufficient consumption of dairy products by a child. Current Pediatrics. 2018;17(3):200–206. (In Russ). doi: 10.15690/vsp.v17i3.1888.
5. Turti TV, Belyaeva IA, Bokuchava EG, et al. The relevance of hypovitaminosis prevention in infants. Current Pediatrics. 2017;16(2): 134–141. (In Russ). doi: 10.15690/vsp. v16i2.1714.
6. Lukushkina EF, Arsen’eva EN, Moiseeva TYu, et al. Effektivnost’ Mul’ti-tabs Bebi u detej rannego vozrasta. Russkij medicinskij zhurnal. 2005;13(1):81–84. (In Russ).
7. Hoppu U, Rinne M, Salo-Vaananen P, et al. Vitamin C in breast milk may reduce the risk of atopy in the infant. Eur J Clin Nutr. 2005;59(1):123–128. doi: 10.1038/sj.ejcn.1602048.
8. [Balabolkin II. Atopy and allergic diseases in children. Zhurnal imeni G.N. Speranskogo. 2013;82(6):99–102. (In Russ).
9. Manti S, Marseglia L, D’Angelo G, et al. “Cumulative stress”: the effects of maternal and neonatal oxidative stress and oxidative stress-inducible genes on programming of atopy. Oxid Med Cell Longev. 2016;2016:8651820. doi: 10.1155/2016/8651820.
10. Erick M. Breast milk is conditionally perfect. Med Hypotheses. 2018;111:82–89. doi: 10.1016/j.mehy.2017.12.020.
11. Revyakina VA, Kuvshinova ED. Ocenka vitaminnogo statusa u detej s pishchevoj allergiej. Ros Vestn Perinatol Pediatr. 2018;63(4): 159–160. (In Russ).
12. Aborin SV, Pechkurov DV, Zakharova LI, Koltsova NS. Complex evaluation of the health status of small premature infants in neonatal intensive care unit. Practical medicine. 2017;(7):119–125. (In Russ).
13. Muts EYu, Ermasheva MA. Health of small premature infants at first and second stages of nursing Kaliningrad region. Smolenskij medicinskij al’manah. 2016;(1):160–163. (In Russ).
14. Korhonen P, Haataja P, Ojala R, et al. Asthma and atopic dermatitis after early-, late-, and post-term birth. Pediatr Pulmonol. 2018;53(3):269–277. doi: 10.1002/ppul.23942.
15. Torshkhoeva R., Namazova L., Gromov I., Vishne va E., Barannik V., Alekseeva A. Vitamin intake: real necessary or dangerous excess? Pediatric pharmacology. 2007;4(2):58–61. (In Russ).
16. Sommer A, Vyas KS. A global clinical view on vitamin A and carotenoids. Am J Clin Nutr. 2012;96:1204S–1206S. doi: 10.3945/ ajcn.112.034868.
17. Barber T, Esteban-Pretel G, Marin MP, Timoneda J. Vitamin A deficiency and alterations in the extracellular matrix. Nutrients. 2014;6(11):4984–5017. doi: 10.3390/nu6114984.
18. Yang SN. Nutritional approach to the prevention of complications of prematurity with emphasis on vitamin A supplementation. Pediatr Neonatol. 2014;55(5):331–332. doi: 10.1016/j.pedneo.2014.04.005.
19. Haidar J, Tsegaye D, Maiam DH, et al. Vitamin A supplementation on child morbidity. East Afr Med J. 2003;80(1):17–21. doi: 10.4314/ eamj.v80i1.8660.
20. Ross AC. Vitamin A. In: Ross A, Caballero B, Cousins R, et al. (eds.) Modern nutrition in health and disease. 11th ed. Lippincott Williams & Wilkins; 2014. рр. 260–277.
21. Tan L, Green MH, Ross AC. Vitamin A kinetics in neonatal rats vs. adult rats: comparisons from model-based compartmental analysis. J Nutr. 2015;145(3):403–410. doi: 10.3945/jn.114.204065.
22. Tan L, Wray AE, Green MH, Ross AC. Compartmental modeling of whole-body vitamin A kinetics in unsupplemented and vitamin A-retinoic acid-supplemented neonatal rats. J Lipid Res. 2014; 55(8):1738–1749. doi: 10.1194/jlr.M050518.
23. Zhong M, Kawaguchi R, Ter-Stepanian M, et al. Vitamin A transport and the transmembrane pore in the cell-surface receptor for plasma retinol binding protein. PLoS One. 2013;8(11):e73838. doi: 10.1371/journal.pone.0073838.
24. See AW, Clagett-Dame M. The temporal requirement for vitamin A in the developing eye: mechanism of action in optic fissure closure and new roles for the vitamin in regulating cell proliferation and adhesion in the embryonic retina. Dev Biol. 2009;325(1):94–105. doi: 10.1016/j.ydbio.2008.09.030.
25. Lefebvre P, Martin PJ, Flajollet S, et al. Transcriptional activities of retinoic acid receptors. Vitam Horm. 2005;70:199–264. doi: 10.1016/S0083-6729(05)70007-8.
26. Spears K, Cheney C, Zerzan J. Low plasma retinol concentrations increase the risk of developing bronchopulmonary dysplasia and long-term respiratory disability in very-low-birth-weight infants. Am J Clin Nutr. 2004;80(6):1589–1594. doi: 10.1093/ajcn/80.6.1589.
27. McGowan SE, Smith J, Holmes AJ, et al. Vitamin A deficiency promotes bronchial hyperreactivity in rats by altering muscarinic M2 receptor function. Am J Physiol Lung Cell Mol Physiol. 2002; 282:L1031–L1039. doi: 10.1152/ajpcell.00420.2001.
28. Wei H, Huang HM, Li TY, et al. Marginal vitamin A deficiency affects lung maturation in rats from prenatal to adult stage. J Nutr Sci Vitaminol (Tokyo). 2009;55:208–214. doi: 10.3177/jnsv.55.208.
29. Meyer S, Gortner L; NeoVitaA Trial Investigators. Early postnatal additional high-dose oral vitamin A supplementation versus placebo for 28 days for preventing bronchopulmonary dysplasia or death in extremely low birth weight infants. Neonatology. 2014;105(3): 182–188. doi: 10.1159/000357212.
30. Laughon MM. Vitamin A shortage and risk of bronchopulmonary dysplasia. JAMA Pediatr. 2014;168(11):995–996. doi: 10.1001/ jamapediatrics.2014.1416.
31. Garofoli F, Mazzucchelli I, Decembrino L, et al. Levels and effectiveness of oral retinol supplementation in VLBW preterm infants. Int J Immunopathol Pharmacol. 2018;32:2058738418820484. doi: 10.1177/2058738418820484.
32. Mactier H, McCulloch DL, Hamilton R, et al. Vitamin A supplementation improves retinal function in infants at risk of retinopathy of prematurity. J Pediatr. 2012;160(6):954–959.e1. doi: 10.1016/j.jpeds.2011.12.013.
33. Raverdeau M, Mills KH. Modulation of T cell and innate immune responses by retinoic acid. J Immunol. 2014;192(7):2953–2958. doi: 10.4049/jimmunol.1303245.
34. Geissmann F, Revy P, Brousse N, et al. Retinoids regulate survival and antigen presentation by immature dendritic cells. J Exp Med. 2003;198(4):623–634. doi: 10.1084/jem.20030390.
35. Korovina NA, Zakharova IN, Zaplatnikov AL, Obynochnaya EG. Correction of vitamin and mineral deficiency in children. Meditsinskii sovet. 2013;(8):94–98. (In Russ).
36. Imdad A, Mayo-Wilson E, Herzer K, Bhutta ZA. Vitamin A supplementation for preventing. morbidity and mortality in children from six months to five years of age. Cochrane Database Syst Rev. 2017;3(3):CD008524. doi: 10.1002/14651858.CD008524.pub3.
37. Gogia S, Sachdev HS. Vitamin A supplementation for the prevention of morbidity and mortality in infants six months of age or less. Cochrane Database Syst Rev. 2011;(10):CD007480. doi: 10.1002/14651858.CD007480.pub2.
38. Namazova-Baranova LS, Makarova SG, Studenikin VM. Vitamins and minerals in the practice of a pediatrician. Moscow: Pediatr»; 2016. 300 р. (In Russ).
39. Levy R, Shriker O, Porath A, et al. Vitamin C for the Treatment of Recurrent Furunculosis in Patients with Impaired Neutrophil Functions. J Infect Dis. 1996;173(6):1502–1505. doi: 10.1093/ infdis/173.6.1502.
40. Jariwalla RJ, Harakeh S. Mechanisms underlying the action of vitamin C in viral and immunodeficiency disease. In: Packer L, Fuchs J, eds. Vitamin C in health and disease. New York: Macel Dekker, Inc.; 1997. рр. 309–322.
41. Alberts B, Bray D, Lewis J, Raff M. Differentiated cells and the maintenance of tissues. Molecular Biology of the Cell. 3rd ed. New York: Garland Publishing, Inc.; 1994. рр. 1139–1193.
42. Dahl H, Degre M. The effect of ascorbic acid on production of human interferon and the antiviral activity in vitro. Acta Pathol Microbiol Scand B. 1976;84B(5):280–284. doi: 10.1111/j.1699-0463.1976.tb01938.x.
43. Pauling L. The immune system. How to live longer and feel better. 20th Anniversary ed. Corvallis: Oregon State University Press; 2006. рр. 105–111.
44. Carr AC, Maggini S. Vitamin C and immune function. Nutrients. 2017;9(11). pii: E1211. doi: 10.3390/nu9111211.
45. Lykkesfeldt J, Poulsen HE. Is vitamin C supplementation beneficial? Lessons learned from randomised controlled trials. Br J Nutr. 2010;103(9):1251–1259. doi: 10.1017/S0007114509993229.
46. Vorilhon P, Arpajou B, Vaillant RH, et al. Efficacy of vitamin C for the prevention and treatment of upper respiratory tract infection. A meta-analysis in children. Eur J Clin Pharmacol. 2019;75(3): 303–311. doi: 10.1007/s00228-018-2601-7.
47. Milan SJ, Hart A, Wilkinson M. Vitamin C for asthma and exercise-induced bronchoconstriction. Cochrane Database Syst Rev. 2013;(10):CD010391. doi: 10.1002/14651858. CD010391.pub2.
48. Mannion CA, Gray-Donald K, Johnson-Down L, Koski KG. Lactating women restricting milk are low on select nutrients. J Am Coll Nutr. 2007;26(2):149–155. doi: 10.1080/07315724.2007.10719596.
49. Black RE, Allen LH, Bhutta ZA, et al. Maternal and child undernutrition: global and regional exposures and health consequences. Lancet. 2008;371:243–260. doi: 10.1016/ S0140-6736(07)61690-0.
50. Vakhlova IV, Shcheplyagina LA. Breastfeeding: provision with micronutrients and ways to optimize it for mother and child. Problems of practical pediatrics. 2007;2(6):24–31. (In Russ).
51. Zakharova IN, Klimov LYa, Kur’yaninova VА, et al. Security with vitamin D of young children. Ros Vestn Perinatol Pediatr. 2016;61:(6):68–76. (In Russ). doi: 10.21508/1027-4065-2016-61-6-68-76.
52. Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol. 2014;21(3):319–329. doi: 10.1016/j.chembiol.2013.12.016.
53. Sutton AL, MacDonald PN. Vitamin D: more than a “bonea-fide” hormone. Mol Endocrinol. 2003;17(5):777–791. doi: 10.1210/me.2002-0363.
54. Grober U, Spitz J, Reichrath J, et al. Vitamin D: Update 2013: From rickets prophylaxis to general preventive healthcare. Der matoendocrinol. 2013;5(3):331–347. doi: 10.4161/derm.26738.
55. Dawodu A, Tsang RC. Maternal vitamin D status: effect on milk vitamin D content and vitamin D status of breastfeeding infants. Adv Nutr. 2012;3(3):353–361. doi: 10.3945/ an.111.000950.
56. Narogan MV, Ryumina II, Krohina KN, et al. Vitamin D u novorozhdennyh i nedonoshennyh detej. Neonatologiya: Novosti. Mneniya. Obuchenie. 2018;6(3):134–138. (In Russ).
57. Lin R, White JH. The pleiotropic actions of vitamin D. Bioessays. 2004;26(1):21–28. doi: 10.1002/bies.10368.
58. Azrielant S, Shoenfeld Y. Vitamin D and the Immune System. Isr Med Assoc J. 2017;19(8):510–511.
59. Edfeldt K, Liu PT, Chun R, et al. T-cell cytokines differentially control human monocyte antimicrobial responses by regulating vitamin D metabolism. Proc Natl Acad Sci U S A. 2010;107(52): 22593–22598. doi: 10.1073/pnas.1011624108.
60. Aranow C. Vitamin D and the immune system. J Investig Med. 2011;59(6):881–886. doi: 10.2310/JIM.0b013e31821b8755.
61. Barlow PG, Svoboda P, Mackellar A, et al. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS One. 2011;6:25333. doi: 10.1371/ journal.pone.0025333.
62. Kanda N, Hau CS, Tada Y, et al. Decreased serum LL-37 and vitamin D3 levels in atopic dermatitis: relationship between IL-31 and oncostatin M. Allergy. 2012;67:804–812. doi: 10.1111/j.1398-9995.2012.02824.x.
63. He CS, Fraser WD, Tang J, et al. The effect of 14 weeks of vitamin D3 supplementation on antimicrobial peptides and proteins in athletes. J Sports Sci. 2016;34:67–74. doi: 10.1080/ 02640414.2015.103364.
64. Ginde AA, Mansbach JM, Camargo CA. Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the Third National Health and Nutrition Examination Survey. Arch Intern Med. 2009;169:384–390. doi: 10.1001/ archinternmed.2008.560.
65. Shimizu Y, Ito Y, Yui K, et al. Intake of 25-hydroxyvitamin D3 reduces duration and severity of upper respiratory tract infection: a randomized, double-blind, placebo-controlled, parallel group comparison study. J Nutr Health Aging. 2018;22(4):491–500. doi: 10.1007/s12603-017-0952-x.
66. Cantorna MT, Snyder L, Lin YD, Yang L. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients. 2015;7:3011–3021. doi: 10.3390/ nu7043011.
67. Schmidt DR, Holmstrom SR, fon Tacer K, et al. Regulation of bile acid synthesis by fat-soluble vitamins A and D. J Biol Chem. 2010;285(19):14486–14494. doi: 10.1074/jbc.M110.116004.
68. Hofmann AF. Bile acids: the good, the bad, and the ugly. News Physiol Sci. 1999;14:24–29. doi: 10.1152/physiologyonline. 1999.14.1.24.
69. Lee YK, Schmidt DR, Cummins CL, et al. Liver receptor homolog-1 regulates bile acid homeostasis but is not essential for feedback regulation of bile acid synthesis. Mol Endocrinol. 2008;22(6): 1345–1356. doi: 10.1210/me.2007-0565.
70. Munns CF, Shaw N, Kiely M, et al. Global consensus recommendations on prevention and management of nutritional rickets. Horm Res Paediatr. 2016;85(2):83–106. doi: 10.1159/000443136.
71. Wagner CL, Greer FR; American Academy of Pediatrics Section on Breastfeeding; American Academy of Pediatrics Committee on Nutrition. Prevention of rickets and vitamin D deficiency in infants, children and adolescents. Pediatrics. 2008;122(5):1142–1152. doi: 10.1542/peds.2008-1862.
72. Zakharova IN, Maltsev SV, Borovik TE, et al. Results of a multicenter research «Rodnichok» for the study of vitamin D insufficiency in infants in Russia. Pediatriia. 2015; 94(1):62–67. (In Russ).
73. Malcev SV, Zakirova AM, Mansurova GSh. Obespechennost vitaminom D detej pervogo goda zhizni i korrekciya ego deficit. Vestnik sovremennoj klinicheskoj mediciny. 2016;9(2):61–64. (In Russ).
74. Soyuz pediatrov Rossii [i dr.]. Nedostatochnost’ vitamina D u detej i podrostkov Rossijskoj Federacii: sovremennye podhody k korrekcii: Nacional’naya programma [Internet]. Moscow: Pediatr”; 2018. 96 р. (In Russ).] Доступно по: https://mamazanuda.ru/wp-content/uploads/2019/04/vitamin-D-2018-full.pdf. Ссылка активна на 15.03.2019.
75. Normy fiziologicheskih potrebnostej v energii i pishchevyh veshchestvah dlya razlichnyh grupp naseleniya Rossijskoj Federacii: Metodicheskie rekomendacii MR 2.3.1.2432-08 (utv. Glavnym gosudarstvennym sanitarnym vrachom RF 18 dekabrya 2008) (In Russ). Доступно по: https://base.garant.ru/ 2168105/. Ссылка активна на 15.03.2019.
76. https://www.who.int/elena/titles/vitamind_supp_pregnancy/ru/
77. Shcheplyagina LA, Moiseeva TYu, Kruglova IV. Effektivnost’ Mul’titabs Bebi u detej rannego vozrasta. Russkij medicinskij zhurnal. 2005;13(1):81–84. (In Russ).
Review
For citations:
Shikh E.V., Makhova A.A., Alekseeva E.I. Vitamins А, С and D — Essential Trio for Infants. Current Pediatrics. 2019;18(3):152-159. (In Russ.) https://doi.org/10.15690/vsp.v18i3.2031