Features and Basic Approaches to Pyoderma Topical Treatment in Children
https://doi.org/10.15690/vsp.v18i6.2069
Abstract
Pyodermas are the most frequent reason for visiting dermatologists among children. The immunity to development of pyodermas is based on skin barrier the part of which is cutaneous microbiome. The microbiome composition is unique and depends on age, localization on various body regions, environment. The change of its qualitative and quantitative composition leads to the development of purulent dermal diseases characterized by clinical diversity and severe course and development of complications (without adequate treatment). In this regard the choice of the correct therapy remains relevant. The results of studies covering the effectiveness of various topic antibacterial agents are analysed. Practical aspects of pyodermia therapy in children using local therapy are illustrated.
About the Authors
Nikolay N. MurashkinRussian Federation
Moscow
Disclosure of interest: receiving research grants from pharmaceutical companies Jansen, Eli Lilly, Novartis. Scientific consultant of Galderna, Pierre Fabre, Bayer, LEO Pharma, Pfizer, AbbVie, Zeldis Pharma LLC companies
Leonid A. Opryatin
Russian Federation
Moscow
Disclosure of interest: absence of a reportable conflict of interests
Roman V. Epishev
Russian Federation
Moscow
Disclosure of interest: scientific consultant of Eli Lilly, Novartis companies
Alexander I. Materikin
Russian Federation
Moscow
Disclosure of interest: scientific consultant of Eli Lilly, Novartis companies
Eduard T. Ambarchyan
Russian Federation
Moscow
Disclosure of interest: scientific consultant of Eli Lilly, Novartis, Jansen companies
Roman A. Ivanov
Russian Federation
Moscow
Disclosure of interest: absence of a reportable conflict of interests
References
1. Bosko CA. Skin barrier insights: from bricks and mortar to molecules and microbes. J Drugs Dermatol. 2019;18(1s):s63-67.
2. Norlen L. Skin barrier structure and function: the single gel phase model. J Invest Dermatol. 2001;117(4):830-836. doi: 10.1038/jid.2001.1.
3. Elias P Feingold K, Fluhr J. In: IM Friedberg, AZ Eisen, K Wolff, et al., eds. The skin as an organ of protection. In dermatology in general medicine. New York: McGraw-Hill; 2003. Рр. 107-118.
4. Boman HG. Antibacterial peptides: basic facts and emerging concepts. J Intern Med. 2003;254(3):197-215. doi: 10.1046/j.1365-2796.2003.01228.x.
5. Harder J, Schroder JM. Psoriatic scales: a promising source for the isolation of human skin-derived antimicrobial proteins. J Leukoc Biol. 2005;77(4):476-486. doi: 10.1189/jlb.0704409.
6. Gunathilake R, Schurer NY, Shoo BA, et al. pH-regulated mechanisms account for pigment-type differences in epidermal barrier function. J Invest Dermatol. 2009;129(7):1719-1729. doi: 10.1038/jid.2008.442.
7. Korting HC, Hubner K, Greiner K, et al. Differences in the skin surface pH and bacterial microflora due to the long-term application of synthetic detergent preparations of pH 5.5 and pH 7.0. Results of a crossover trial in healthy volunteers. Acta Derm Venereol. 1990;70(5):429-431.
8. Hachem JP, Crumrine D, Fluhr J, et al. pH directly regulates epidermal permeability barrier homeostasis, and stratum corneum integrity/cohesion. J Invest Dermatol. 2003;121(2):345-353. doi: 10.1046/j.1523-1747.2003.12365.x.
9. Gunathilake R. The human epidermal antimicrobial barrier: current knowledge, clinical relevance and therapeutic implications. Recent Pat Antiinfect Drug Discov. 2015;10(2):84-97. doi: 10.2174/1574891x10666150623093446.
10. Basler K, Bergmann S, Heisig M, et al. The role of tight junctions in skin barrier function and dermal absorption. J Control Release. 2016;242:105-118. doi: 10.1016/j.jconrel.2016.08.007.
11. Saijo S, Tagami H Dry skin of newborn infants: functional analysis of the stratum corneum. Pediatr Dermatol. 1991;8(2): 155-159. doi: 10.1111/j.1525-1470.1991.tb00308.x.
12. Derraik JG, Rademaker M, Cutfield WS, et al. Effects of age, gender, BMI, and anatomical site on skin thickness in children and adults with diabetes. PLoS One. 2014;9(1):e86637. doi: 10.1371/journal.pone.0086637.
13. Akutsu N, Ooguri M, Onodera T, et al. Functional characteristics of the skin surface of children approaching puberty: age and seasonal influences. Acta Derm Venereol. 2009;89(1):21-27. doi: 10.2340/00015555-0548.
14. Grice EA, Kong HH, Conlan S, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009; 324(5931):1190-1192. doi: 10.1126/science.1171700.
15. Marples M. The ecology of the human skin. Springfield IL; 1965. 970 р.
16. Fierer N, Hamady M, Lauber CL, Knight R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci U S A. 2008;105(46):17994-17999. doi: 10.1073/pnas.0807920105.
17. Agarwal S, Sharma G, Dang S, et al. Antimicrobial peptides as anti-infectives against Staphylococcus epidermidis. Med Princ Pract. 2016;25(4):301-308. doi: 10.1159/000443479.
18. Bibel DJ, Miller SJ, Brown BE, et al. Antimicrobial activity of stratum corneum lipids from normal and essential fatty acid-deficient mice. J Invest Dermatol. 1989;92(4):632-638. doi: 10.1111/1523-1747.ep12712202.
19. Bibel DJ, Aly R, Shinefield HR. Antimicrobial activity of sphin-gosines. J Invest Dermatol. 1992;98(3):269-273. doi: 10.1111/1523-1747.ep12497842.
20. Bowen AC, Mahe A, Hay RJ, et al. The global epidemiology of impetigo: a systematic review of the population prevalence of impetigo and pyoderma. PLoS One. 2015;10(8):e0136789. doi: 10.1371/journal.pone.0136789.
21. WHO reference number: WHO/FCH/CAH/05.12. Epidemiology and Management of common skin diseases in children in developing countries. Geneva: World Health Organisation; 2005. 54 р.
22. Stevens DL, Bisno AL, Chambers HF, et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis. 2014;59(2):e10-52. doi: 10.1093/cid/ciu444.
23. Dermatovenerologiya. Natsional’noye rukovodstvo. Kratkoye izdaniye. Ed by YuS Butov, YuK Skripkin, OL Ivanov. Moscow: GEOTAR-Media; 2013. 896 p. (In Russ).
24. Johnson T, Gomez B, McIntyre M, et al. The cutaneous microbiome and wounds: new molecular targets to promote wound healing. Int J Mol Sci. 2018;19(9). pii: E2699. doi: 10.3390/ijms19092699.
25. Canesso MC, Vieira AT, Castro TB, et al. Skin wound healing is accelerated and scarless in the absence of commensal microbiota. J Immunol. 2014;193(10):5171-5180. doi: 10.4049/jimmunol.1400625.
26. Sukumaran V, Senanayake S. Bacterial skin and soft tissue infections. Aust Prescr. 2016;39(5):159-163. doi: 10.18773/austprescr.2016.058.
27. Federal'nyye klinicheskiye rekomendatsii. Dermatovene-rologiya 2015. Bolezni kozhi. Infektsii, peredavayemyye polovym putem. 5th ed. revised and updated. Moscow: Delovoy ekspress; 2016. 768 p. (In Russ).
28. Strachunsky LS, Dekhnich AV, Belkova JuA, et al. Susceptibility of Staphylococcus aureus from hospitalised patients to topical antimicrobials in Russia. Clinical microbiology and antimicrobial chemotherapy. 2002;4(2):157-163. (In Russ).
29. Perera G, Hay R. A guide to antibiotic resistance in bacterial skin infections. J Eur Acad Dermatol Venereol. 2005;19(5):531-545. doi: 10.1111/j.1468-3083.2005.01296.x.
30. Avci O, Tanyildizi T, Kusku E. A comparison between the effectiveness of erythromycin, single-dose clarithromycin and topical fusidic acid in the treatment of erythrasma. J Dermatolog Treat. 2013;24(1):70-74. doi: 10.3109/09546634.2011.594870.
31. Wilkinson JD. Fusidic acid in dermatology. Br J Dermatol. 1998; 139 Suppl 53:37-40. doi: 10.1046/j.1365-2133.1998.1390s3037.x.
32. Godtfredsen W, Roholt K, Tybring L. Fucidin A new orally active antibiotic. Lancet. 1962;1(7236):928-931. doi: 10.1016/s0140-6736(62)91968-2.
33. Sobye P. [Cutaneous staphylococcus aureus infection treated with fucidin ointment. (In Danish)]. Ugeskr Laeger. 1966; 128(7):204-206.
34. Schofer H, Simonsen L. Fusidic acid in dermatology: an updated review. Eur J Dermatol. 2010;20(1):6-15. doi: 10.1684/ejd.2010.0833.
35. Stuttgen G, Bauer E. Penetration and permeation into human skin of fusidic acid in different galenical formulation. Arzneimittel-forschung. 1988;38(5):730-735.
36. Koning S, van Suijlekom-Smit L, Nouwen J, et al. Fusidic acid cream in the treatment of impetigo in general practice: double blind randomised placebo controlled trial. BMJ. 2002;324(7331): 203-206. doi: 10.1136/bmj.324.7331.203.
37. Vickers CF. Percutaneous absorption of sodium fusidate and fusidic acid. Br J Dermatol. 1969;81(12):902-908. doi: 10.1111/j.1365-2133.1969.tb15972.x.
38. Alexander WD, Hutshinson JG. Staphylococcal septicaemia treated successfully with methicillin, fusidic acid, and penicillin G in combination. Lancet. 1963;1(7271):55-56. doi: 10.1016/s0140-6736(63)91184-x.
39. Pfaller MA, Castanheira M, Sader HS, Jones RN. Evaluation of the activity of fusidic acid tested against contemporary Gram-positive clinical isolates from the USA and Canada. Int J Antimicrob Agents. 2010;35(3):282-287. doi: 10.1016/j.ijantimicag.2009.10.023.
40. Lemaire S, van Bambeke F, Pierard D, et al. Activity of fusidic acid against extracellular and intracellular Staphylococcus aureus: influence of pH and comparison with linezolid and clindamycin. Clin Infect Dis. 2011;52 Suppl 7:S493-503. doi: 10.1093/cid/cir165.
41. Kutty KP, Nath IV, Kothandaraman KR, et al. Fusidic acid-induced hyperbilirubinemia. Dig Dis Sci. 1987;32(8):933-938. doi: 10.1007/bf01296717.
Review
For citations:
Murashkin N.N., Opryatin L.A., Epishev R.V., Materikin A.I., Ambarchyan E.T., Ivanov R.A. Features and Basic Approaches to Pyoderma Topical Treatment in Children. Current Pediatrics. 2019;18(6):478-484. (In Russ.) https://doi.org/10.15690/vsp.v18i6.2069