Preview

Вопросы современной педиатрии

Расширенный поиск

Мышечная слабость и утрата двигательных навыков у пациентов с детским церебральным параличом

https://doi.org/10.15690/vsp.v19i2.2103

Полный текст:

Аннотация

В обзоре рассматриваются различные аспекты снижения мышечной силы и утраты двигательных навыков у пациентов с детским церебральным параличом (ДЦП). Описаны патофизиологические механизмы, обусловленные первичным повреждением и реорганизацией центральной нервной системы (ЦНС), структурно-функциональными изменениями мышечной ткани, биомеханическим дисбалансом. Проведены параллели между изменениями, наблюдаемыми у пациентов с ДЦП и саркопенией — физиологическим процессом утраты мышечной силы и функции у пациентов пожилого возраста. Показано, что для пациентов с церебральным параличом характерен феномен «раннего старения» опорнодвигательного аппарата. Обсуждаются потенциальные направления профилактики саркопении у детей и взрослых с ДЦП. Понимание описанных механизмов первичных и возрастных изменений мышечной ткани при ранних повреждениях ЦНС необходимо для планирования повседневной активности пациентов, выбора правильной тактики реабилитации, минимизации неблагоприятных лечебных воздействий и обоснованной коррекции сопутствующих нарушений. 

Об авторах

О. А. Клочкова
Национальный медицинский исследовательский центр здоровья детей
Россия

Клочкова Ольга Андреевна - кандидат медицинских наук, врач-невролог, старший научный сотрудник лаборатории нервных болезней НМИЦ здоровья детей.

119991, Москва, Ломоносовский пр-т, д. 2 стр. 1.



А. Л. Куренков
Национальный медицинский исследовательский центр здоровья детей
Россия

119991, Москва, Ломоносовский пр-т, д. 2 стр. 1.



Список литературы

1. Bax M, Goldstein M, Rosenbaum P, et al. Proposed definition and classification of cerebral palsy. Dev Med Child Neurol. 2005;47(8):571-576. doi: 10.1017/s001216220500112x.

2. Rosenbaum P, Paneth N, Leviton A, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;49(6):480. doi: 10.1111/j.1469-8749.2007.tb12610.x.

3. Palisano R, Rosenbaum P, Walter S, et al. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214-223. doi: 10.1111/j.1469-8749.1997.tb07414.x.

4. Hanna SE, Rosenbaum PL, Bartlett DJ, et al. Stability and decline in gross motor function among children and youth with cerebral palsy aged 2 to 21 years. Dev Med Child Neurol. 2009;51(4):295-302. doi: 10.1111/j.1469-8749.2008.03196.x.

5. Bottos M, Feliciangeli A, Sciuto L, et al. Functional status of adults with cerebral palsy and implications for treatment of children. Dev Med Child Neurol. 2001;43(8):516-528. doi: 10.1017/s0012162201000950.

6. Morgan P, McGinley J. Gait function and decline in adults with cerebral palsy: a systematic review. Disabil Rehabil. 2014;36(1): 1-9. doi: 10.3109/09638288.2013.775359.

7. Day SM, Wu YW, Strauss DJ, et al. Change in ambulatory ability of adolescents and young adults with cerebral palsy. Dev Med Child Neurol. 2007;49(9):647-653. doi: 10.1111/j.1469-8749.2007.00647.x.

8. Ando N, Ueda S. Functional deterioration in adults with cerebral palsy. Clin Rehabil. 2000;14(3):300-306. doi: 10.1191/026921500672826716.

9. Strauss D, Ojdana K, Shavelle R, Rosenbloom L. Decline in function and life expectancy of older persons with cerebral palsy. Neuro Rehabilitation. 2004;19(1):69-78. doi: 10.3233/nre-2004-19108.

10. Morrell DS, Pearson JM, Sauser DD. Progressive bone and joint abnormalities of the spine and lower extremities in cerebral palsy. Radiographics. 2002;22(2):257-268. doi: 10.1148/radiographics.22.2.g02mr19257.

11. Graham HK, Rosenbaum P, Paneth N, et al. Cerebral palsy. Nat Rev Dis Primers. 2016;2:15082. doi: 10.1038/nrdp.2015.82.

12. Verschuren O, Smorenburg AR, Luiking Y, et al. Determinants of muscle preservation in individuals with cerebral palsy across the lifespan: a narrative review of the literature. J Cachexia Sarcopenia Muscle. 2018;9(3):453-464. doi: 10.1002/jcsm.12287.

13. Heinen F, Desloovere K, Schroeder AS, et al. The updated European Consensus 2009 on the use of Botulinum toxin for children with cerebral palsy. Eur J Paediatr Neurol. 2010;14(1):45-66. doi: 10.1016/j.ejpn.2009.09.005.

14. Ross SA, Engsberg JR. Relation between spasticity and strength in individuals with spastic diplegic cerebral palsy. Dev Med Child Neurol. 2002;44(3):148-157. doi: 10.1017/s0012162201001852.

15. Mockford M, Caulton JM. The pathophysiological basis of weakness in children with cerebral palsy. Pediatr Phys Ther. 2010; 22(2):222-233. doi: 10.1097/PEP.0b013e3181dbaf96.

16. Multani I, Manji J, Tang MJ, et al. Sarcopenia, cerebral palsy, and botulinum toxin Type A. JBJS Rev. 2019;7(8):e4. doi: 10.2106/JBJS.RVW.18.00153.

17. Blair E, Langdon K, McIntyre S, et al. Survival and mortality in cerebral palsy: observations to the sixth decade from a data linkage study of a total population register and national death index. BMC Neurol. 2019;19(1):111. doi: 10.1186/s12883-019-1343-1.

18. Tarsuslu T, Livanelioglu A. Relationship between quality of life and functional status of young adults and adults with cerebral palsy. Disabil Rehabil. 2010;32(20):1658-1665. doi: 10.3109/09638281003649904.

19. Bakheit AM. Management of muscle spasticity. Crit Rev Phy Rehabil Med. 1996;8(3):235-252. doi: 10.1615/critrevphysreha-bilmed.v8.i3.50.

20. Бер М., Фротшер М. Топический диагноз в неврологии по Петеру Дуусу: анатомия, физиология, клиника / Пер. с англ. под ред. З.А. Суслиной. 4-е изд. — М.: Практическая медицина, 2009. — С. 58.

21. Einspieler C, Marschik PB. Early markers for cerebral palsy. In: Cerebral palsy: a multidisciplinary approach (Ed. C.P. Panteliadis). Cham: Springer; 2018. Рр. 69-74. doi: 10.1007/978-3-319-67858-0_9.

22. Фундаментальная и клиническая физиология: Учебник для студентов высших учебных заведений / Под ред. А.Г. Камкина, А.А. Каменского. — М.: Академия, 2004. — C. 307-346.

23. Damiano DL, Dodd K, Taylor NF. Should we be testing and training muscle strength in cerebral palsy? Dev Med Child Neurol. 2002;44(1):68-72. doi: 10.1017/s0012162201001682.

24. Damiano DL, Quinlivan J, Owen BF, et al. Spasticity versus strength in cerebral palsy: relationships among involuntary resistance, voluntary torque, and motor function. Eur J Neurol. 2001; 8 Suppl 5:40-49. doi: 10.1046/j.1468-1331.2001.00037.x.

25. Engsberg J, Olree K, Ross S, et al. Maximum active resultant knee joint torques in children with cerebral palsy. J Appl Biomech. 1998;14(1):52-61. doi: 10.1123/jab.14.1.52.

26. Rose J, McGill KC. The motor unit in cerebral palsy. Dev Med Child Neurol. 1998;40(4):270-277. doi: 10.1111/j.1469-8749.1998.tb15461.x.

27. Stackhouse SK, Binder-Macleod SA, Lee SC. Voluntary muscle activation, contractile properties, and fatigability in children with and without cerebral palsy. Muscle Nerve. 2005;31(5):594-601. doi: 10.1002/mus.20302.

28. Eng JJ. Strength training in individuals with stroke. Physiother Can. 2004;56(4):189-201. doi: 10.2310/6640.2004.00025.

29. Tammik K, Matlep M, Ereline J, et al. Quadriceps femoris muscle voluntary force and relaxation capacity in children with spastic diplegic cerebral palsy. Pediatr Exerc Sci. 2008;20(1):18-28. doi: 10.1123/pes.20.1.18.

30. Mirbagheri MM, Barbeau H, Ladouceur M, Kearney RE. Intrinsic and reflex stiffness in normal and spastic, spinal cord injured subjects. Exp Brain Res. 2001;141(4):446-459. doi: 10.1007/s00221-001-0901-z.

31. Скворцов И.А. Иллюстрированная неврология развития. — М.: МЕДпресс-информ, 2014. — 351 с.

32. Баранов А.А., Клочкова О.А., Куренков А.Л., и др. Роль пластичности головного мозга в функциональной адаптации организма при детском церебральном параличе с поражением рук // Педиатрическая фармакология. — 2012. — Т. 9. — № 6. — С. 24-32. doi: 10.15690/pf.v9i6.515.

33. Staudt M. Reorganization after pre- and perinatal brain lesions. J Anat. 2010;217(4):469-474. doi: 10.1111/j.1469-7580.2010.01262.x.

34. Vandermeeren Y, Sebire G, Grandin CB, et al. Functional reorganization of brain in children affected with congenital hemiplegia: fMRI study. Neuroimage. 2003;20(1):289-301. doi: 10.1016/s1053-8119(03)00262-3.

35. Schiaffino S, Reggiani C. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev. 1996;76(2):371-423. doi: 10.1152/physrev.1996.76.2.371.

36. Lieber RL, Roberts TJ, Blemker SS, et al. Skeletal muscle mechanics, energetics and plasticity. J Neuroeng Rehabil. 2017;14(1):108. doi: 10.1186/s12984-017-0318-y.

37. Moore GE, Goldspink G. The effect of reduced activity on the enzymatic development of phasic and tonic muscles in the chicken. J Dev Physiol. 1985;7(6):381-386.

38. Baldwin KM, Haddad F. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms. Am J Phys Med Rehabil. 2002;81(11 Suppl):S40-51. doi: 10.1097/01.PHM.0000029723.36419.0D.

39. Jones D, Round J, de Haan A. Skeletal muscle from molecules to movement. London: Churchhill Livingstone; 2004. doi: 10.1016/b978-0-443-07427-1.x5001-8.

40. Booth FW, Kelso JR. Effect of hind-limb immobilization on contractile and histochemical properties of skeletal muscle. Pflugers Arch. 1973;342(3):231-238. doi: 10.1007/bf00591371.

41. Roy RR, Bello MA, Bouissou P, Edgerton VR. Size and metabolic properties of fibers in rat fasttwitch muscles after hindlimb suspension. J Appl Physiol. 1987;62(6):2348-2357. doi: 10.1152/jappl.1987.62.6.2348.

42. Salmons S, Sreter FA. Significance of impulse activity in the transformation of skeletal muscle type. Nature. 1976;263(5572): 30-34. doi: 10.1038/263030a0.

43. Eisenberg B, Salmons S. The reorganization of subcellular structure in muscle undergoing fast-to-slow type transformation. Cell Tissue Res. 1981;220(3):449-471. doi: 10.1007/bf00216750.

44. Ito JI, Araki A, Tanaka H, et al. Muscle histopathology in spastic cerebral palsy. Brain Dev. 1996;18(4):299-303. doi: 10.1016/0387-7604(96)00006-x.

45. Marbini A, Ferrari A, Cioni G, et al. Immunohistochemical study of muscle biopsy in children with cerebral palsy. Brain Dev. 2002; 24(2):63-66. doi: 10.1016/s0387-7604(01)00394-1.

46. Sjostrom M, Fugl-Meyer AR, Nordin G, Wahlby L. Post-stroke hemiplegia; crural muscle strength and structure. Scand J Rehabil Med Suppl. 1980;7:53-67.

47. Castle ME, Reyman TA, Schneider M. Pathology of spastic muscle in cerebral palsy. Clin Orthop Relat Res. 1979;(142):223-232. doi: 10.1097/00003086-197907000-00036.

48. Romanini L, Villani C, Meloni C, et al. Histological and morphological aspects of muscle in infantile cerebral palsy. Ital J Orthop Traumatol. 1989;15(1):87-93.

49. Berry MM, Standring SM, Bannister LM. The nervous system. In: Williams PL, Bannister LH, Berry MM, editors. Gray's Anatomy. 38th ed. London: Churchill Livingstone; 1995. Рр. 901-1398.

50. Middleton LT. Disorders of the neuromuscular junction. In: Schapira AH, Griggs RC, eds. Muscle Diseases. Boston: Butterworth Heinemann; 1999. Рр. 251-298.

51. Lieber RL, Friden J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve. 2000;23(11):1647-1666. doi: 10.1002/1097-4598(200011)23:11<1647::aid-mus1>3.0.co;2-m.

52. Noble J, Charles-Edwards GD, Keevil SF, et al. Intramuscular fat in ambulant young adults with bilateral spastic cerebral palsy. BMC Musculoskelet Disord. 2014;15:236. doi: 10.1186/1471-247415-236.

53. Johnson DL, Miller F, Subramanian P, Modlesky CM. Adipose tissue infiltration of skeletal muscle in children with cerebral palsy. J Pediatr. 2009;154:715-720. doi: 10.1016/j.jpeds.2008.10.046.

54. Obst SJ, Boyd R, Read F, Barber L. Quantitative 3-D ultrasound of the medial gastrocnemius muscle in children with unilateral spastic cerebral palsy. Ultrasound Med Biol. 2017;43(12):2814-2823. doi: 10.1016/j.ultrasmedbio.2017.08.929.

55. Foran J, Steinman S, Barash I, et al. Structural and mechanical alterations in spastic skeletal muscle. Dev Med Child Neurol. 2005;47:713-717. doi: 10.1111/j.1469-8749.2005.tb01063.x.

56. Booth CM, Cortina-Borja MJ, Theologis TN. Collagen accumulation in muscles of children with cerebral palsy and correlation with severity of spasticity. Dev Med Child Neurol. 2001;43:314-320. doi: 10.1111/j.1469-8749.2001.tb00211.x.

57. O'Dwyer NJ, Neilson PD, Nash J. Mechanisms of muscle growth related to muscle contracture in cerebral palsy. Dev Med Child Neurol. 2008;31(4):543-547. doi: 10.1111/j.1469-8749.1989.tb04034.x.

58. Lieber RL, Friden J. Spasticity causes a fundamental rearrangement of muscle-joint interaction. Muscle Nerve. 2002;25(2): 265-270. doi: 10.1002/mus.10036.

59. Labeit S, Kolmerer B. Titins: Giant proteins in charge of muscle ultrastructure and elasticity. Science. 1995;270(5234):293-296. doi: 10.1126/science.270.5234.293.

60. Neagoe C, Kulke M, del Monte F, et al. Titin isoform switch in ischemic human heart disease. Circulation. 2002;106(11): 1333-1341. doi: 10.1161/01.cir.0000029803.93022.93.

61. Lieber RL, Runesson E, Einarsson F, Friden J. Inferior mechanical properties of spastic muscle bundles due to hypertrophic but compromised extracellular matrix material. Muscle Nerve. 2003; 28(4):464-471. doi: 10.1002/mus.10446.

62. Friden J, Lieber RL. Spastic muscle cells are shorter and stiffer than normal cells. Muscle Nerve. 2003;27(2):157-164. doi: 10.1002/mus.10247.

63. Elder G, Kirk J, Stewart G, et al. Contributing factors to muscle weakness in children with cerebral palsy. Dev Med Child Neurol. 2003;45:542-550. doi: 10.1111/j.1469-8749.2003.tb00954.x.

64. Клочкова О.А., Куренков А.Л., Кенис В.М. Формирование контрактур при спастических формах детского церебрального паралича: вопросы патогенеза // Ортопедия, травматология и восстановительная хирургия детского возраста. — 2018. — Т. 6. — № 1. — С. 58-66. doi: 10.17816/PTORS6158-66.

65. Barrett RS, Lichtwark GA. Gross muscle morphology and structure in spastic cerebral palsy: a systematic review. Dev Med Child Neurol. 2010;52(9):794-804. doi: 10.1111/j.1469-8749.2010.03686.x.

66. Herskind A, Ritterband-Rosenbaum A, Willerslev-Olsen M, et al. Muscle growth is reduced in 15-month-old children with cerebral palsy. Dev Med Child Neurol. 2016;58(5):485-491. doi: 10.1111/dmcn.12950.

67. Noble JJ, Fry NR, Lewis AP, et al. Lower limb muscle volumes in bilateral spastic cerebral palsy. Brain Dev. 2014;36(4):294-300. doi: 10.1016/j.braindev.2013.05.008.

68. Malaiya R, McNee AE, Fry NR, et al. The morphology of the medial gastrocnemius in typically developing children and children with spastic hemiplegic cerebral palsy. J Electromyogr Kinesiol. 2007;17(6):657-663. doi: 10.1016/j.jelekin.2007.02.009.

69. Marzetti E, Calvani R, Tosato M, et al. SPRINTT Consortium. Sarcopenia: an overview. Aging Clin Exp Res. 2017;29(1):11-17. doi: 10.1007/s40520-016-0704-5.

70. Shortland A. Muscle deficits in cerebral palsy and early loss of mobility: can we learn something from our elders? Dev Med Child Neurol. 2009;51 Suppl 4:59-63. doi: 10.1111/j.1469-8749.2009.03434.x.

71. Hughes MA, Myers BS, Schenkman ML. The role of strength in rising from a chair in the functionally impaired elderly. J Biomech. 1996;29:1509-1513. doi: 10.1016/s0021-9290(96)80001-7.

72. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002; 50(5):889-896. doi: 10.1046/j.1532-5415.2002.50216.x.

73. Woo J. Sarcopenia. Clin Geriatr Med. 2017;33(3):305-314. doi: 10.1016/j.cger.2017.02.003.

74. Short KR, Vittone JL, Bigelow ML, et al. Age and aerobic exercise training effects on whole body and muscle protein metabolism. Am J Physiol Endocrinol Metab. 2004;286:E92-E101. doi: 10.1152/ajpendo.00366.2003.

75. Volpi E, Mittendorfer B, Rasmussen BB, Wolfe RR. The response of muscle protein anabolism to combined hyperaminoacidemia and glucose-induced hyperinsulinemia is impaired in the elderly. J Clin Endocrinol Metab. 2000;85:4481-4490. doi: 10.1210/jc.85.12.4481.

76. Boirie Y. Fighting sarcopenia in older frail subjects: protein fuel for strength, exercise for mass. J Am Med Dir Assoc. 2013;14: 140-143. doi: 10.1016/j.jamda.2012.10.017.

77. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69:S4-S9. doi: 10.1093/gerona/glu057.

78. Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr. 2006;84:475-482. doi: 10.1093/ajcn/84.3.475.

79. Stein TP, Wade CE. Metabolic consequences of muscle disuse atrophy. J Nutr. 2005;135:1824S-1828S. doi: 10.1093/jn/135.7.1824s.

80. Aycicek A, Iscan A. Oxidative and antioxidative capacity in children with cerebral palsy. Brain Res Bull. 2006;69:666-668. doi: 10.1016/j.brainresbull.2006.03.014.

81. Lexell J, Taylor CC, Sjostrom M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci. 1988;84:275-294. doi: 10.1016/0022-510x(88)90132-3.

82. Vandervoort AA. Aging of the human neuromuscular system. Muscle Nerve. 2002;25:17-25. doi: 10.1002/mus.1215.

83. Ryan AS, Nicklas BJ. Age-related changes in fat deposition in mid-thigh muscle in women: relationships with metabolic cardiovascular disease risk factors. Int J Obes Relat Metab Disord. 1999;23:126-132. doi: 10.1038/sj.ijo.0800777.

84. Edstrom E, Altun M, Bergman E, et al. Factors contributing to neuromuscular impairment and sarcopenia during aging. Physiol Behav. 2007;92:129-135. doi: 10.1016/j.phys-beh.2007.05.040.

85. Short KR, Bigelow ML, Kahl J, et al. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci U S A. 2005;102:5618-5623. doi: 10.1073/pnas.0501559102.

86. Rooyackers OE, Adey DB, Ades PA, Nair KS. Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proc Natl Acad Sci U S A. 1996;93:15364-15369. doi: 10.1073/pnas.93.26.15364.

87. Lanza I, Short D, Short K, et al. Endurance exercise as a countermeasure for aging. Diabetes. 2012;61(10):2653-2653. doi: 10.2337/db12-er10.

88. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39:412-423. doi: 10.1093/ageing/afq034.

89. Sharkey JR, Giuliani C, Haines PS, et al. Summary measure of dietary musculoskeletal nutrient (calcium, vitamin D, magnesium, and phosphorus) intakes is associated with lower-extremity physical performance in homebound elderly men and women. Am J Clin Nutr. 2003;77:847-856. doi: 10.1093/ajcn/77.4.847.

90. Mithal A, Bonjour JP, Boonen S, et al. Impact of nutrition on muscle mass, strength, and performance in older adults. Osteoporos Int. 2013;24(5):1555-1566. doi: 10.1007/s00198-012-2236-y.

91. Robinson S, Cooper C, Aihie Sayer A. Nutrition and sarcopenia: a review of the evidence and implications for preventive strategies. J Aging Res. 2012;2012:510801 doi: 10.1201/b19985-3.

92. Ter Borg S, de Groot LC, Mijnarends DM, et al. Differences in nutrient intake and biochemical nutrient status between sarcope-nic and nonsarcopenic older adults — results from the Maastricht Sarcopenia Study. J Am Med Dir Assoc. 2016;17:393-401. doi: 10.1016/j.jamda.2015.12.015.

93. Verlaan S, Aspray TJ, Bauer JM, et al. Nutritional status, body composition, and quality of life in community-dwelling sarcopenic and non-sarcopenic older adults: a case-control study. Clin Nutr. 2017;36:267-274. doi: 10.1016/j.clnu.2015.11.013.

94. Feart C, Jutand MA, Larrieu S, et al. Energy, macronutrient and fatty acid intake of French elderly community dwellers and association with socio-demographic characteristics: data from the Bordeaux sample of the Three-City Study. Br J Nutr. 2007;98:1046-1057. doi: 10.1017/s0007114507756520.

95. Rousset S, Patureau Mirand P, Brandolini M, et al. Daily protein intakes and eating patterns in young and elderly French. Br J Nutr. 2003;90:1107-1115. doi: 10.1079/bjn20031004.

96. Bollwein J, Diekmann R, Kaiser MJ, et al. Distribution but not amount of protein intake is associated with frailty: a cross-sectional investigation in the region of Nurnberg. Nutr J. 2013;12:109. doi: 10.1186/1475-2891-12-109.

97. Rempel G. The importance of good nutrition in children with cerebral palsy. Phys Med Rehabil Clin N Am. 2015;26:39-56. doi: 10.1016/j.pmr.2014.09.001.

98. Студеникин В.М., Букш А.А. Нарушения нутритивного статуса у детей с церебральным параличом // Лечащий врач. — 2016. — № 11. — С. 68.

99. Arrowsmith FE, Allen JR, Gaskin KJ, et al. Reduced body protein in children with spastic quadriplegic cerebral palsy. Am J Clin Nutr. 2006;83:613-618. doi: 10.1093/ajcn.83.3.613.

100. Пак Л.А., Макарова С.Г., Чумбадзе Т.Р., Фисенко А.П. Нарушения нутритивного статуса и их коррекция у детей с детским церебральным параличом // Российский педиатрический журнал. — 2019. — Т. 22. — № 1. — С. 23-27. doi: 10.18821/1560-9561-201922-1-23-27.

101. Камалова А.А., Рахмаева Р.Ф., Малиновская Ю.В. Гастроэнтерологические аспекты ведения детей с детским церебральным параличом (обзор литературы) // РМЖ. — 2019. — Т. 27. — № 5. — С. 30-35.

102. Kalra S, Aggarwal A, Chillar N, Faridi MM. Comparison of micronutrient levels in children with cerebral palsy and neurologically normal controls. Indian J Pediatr. 2015;82:140-144. doi: 10.1007/s12098-014-1543-z.

103. Schoendorfer N, Tinggi U, Sharp N, et al. Protein levels in enteral feeds: do these meet requirements in children with severe cerebral palsy? Br J Nutr. 2012;107:1476-1481. doi: 10.1017/S0007114511004533.

104. Verschuren O, Peterson MD. Nutrition and physical activity in people with cerebral palsy: opposite sides of the same coin. Dev Med Child Neurol. 2016;58:426. doi: 10.1111/dmcn.13107.

105. Hamilton B. Vitamin D and human skeletal muscle. Scand J Med Sci Sports. 2010;20:182-190. doi: 10.1111/j.1600-0838.2009.01016.x.

106. Salles J, Chanet A, Giraudet C, et al. 1,25(OH)2-vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. Mol Nutr Food Res. 2013;57:2137-2146. doi: 10.1002/mnfr.201300074.

107. Lee SH, Yu J. Risk factors of vitamin D deficiency in children with epilepsy taking anticonvulsants at initial and during follow-up. Ann Pediatr Endocrinol Metab. 2015;20:198-205. doi: 10.6065/apem.2015.20.4.198.

108. Gillett J, Boyd R, Carty C, Barber L. The impact of strength training on skeletal muscle morphology and architecture in children and adolescents with spastic cerebral palsy: a systematic review. Res Dev Disabil. 2016;56:183-196. doi: 10.1016/j.ridd.2016.06.003.

109. Amirmudin NA, Lavelle G, Theologis T, et al. Multilevel surgery for children with cerebral palsy: a meta-analysis. Pediatrics. 2019;143(4). pii: e20183390. doi: 10.1542/peds.2018-3390.


Для цитирования:


Клочкова О.А., Куренков А.Л. Мышечная слабость и утрата двигательных навыков у пациентов с детским церебральным параличом. Вопросы современной педиатрии. 2020;19(2):107-115. https://doi.org/10.15690/vsp.v19i2.2103

For citation:


Klochkova O.A., Kurenkov A.L. Muscular Weakness and Loss of Motor Skills in Patients with Cerebral Palsy. Current Pediatrics. 2020;19(2):107-115. (In Russ.) https://doi.org/10.15690/vsp.v19i2.2103

Просмотров: 84


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)