Новая коронавирусная инфекция: особенности клинического течения, возможности диагностики, лечения и профилактики инфекции у взрослых и детей
https://doi.org/10.15690/vsp.v19i2.2105
Аннотация
В декабре 2019 г. в городе Ухани (провинция Хубэй, Китай) были зарегистрированы первые случаи новой коронавирусной инфекции. Уже к началу апреля 2020 г. инфекция явилась причиной смерти более 100 тыс. человек во всем мире. В обзоре проведен анализ особенностей течения инфекции у взрослых и детей, а также возможностей диагностики, лечения и профилактики COVID-19. Согласно опубликованным данным, можно выделить группы высокого риска по развитию тяжелых форм заболевания, к которым относятся лица пожилого возраста, лица с латентной туберкулезной инфекцией, взрослые пациенты с тяжелой сопутствующей патологией. В настоящее время имеются ограниченные эпидемиологические данные о распространении, заболеваемости и смертности COVID-19 в детской популяции. Вместе с тем уже сейчас можно сделать вывод о легком, средней тяжести и бессимптомном течении заболевания у детей в 90% случаев. Лечение больных COVID-19 ограничено отсутствием средств для этиотропной терапии и возможностью применения только симптоматической терапии. Вакцины для предупреждения COVID-19 также отсутствуют.
Ключевые слова
Об авторах
А. А. СтаршиноваРоссия
Старшинова Анна Андреевна - доктор медицинских наук, начальник управления научными исследованиями НМИЦ им. В.А. Алмазова.
197341, Санкт-Петербург, ул. Аккуратова д. 2.
Раскрытие интересов:
Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.
Е. А. Кушнарева
Россия
197341, Санкт-Петербург, ул. Аккуратова д. 2.
Раскрытие интересов:
Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.
А. М. Малкова
Россия
Санкт-Петербург.
Раскрытие интересов:
Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.
И. Ф. Довгалюк
Россия
Санкт-Петербург.
Раскрытие интересов:
Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.
Д. А. Кудлай
Россия
Москва.
Раскрытие интересов:
Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить.
Список литературы
1. Zhu N, Zhang D, Wang W, et al. Novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8): 727-733. doi: 10.1056/NEJMoa2001017.
2. Dong Y, Mo X, Hu Y, et al. Epidemiological characteristics of 2143 pediatric patients with 2019 coronavirus disease in china. Pediatrics. 2020. doi: 10.1542/peds.2020-0702.
3. WHO. Coronavirus disease (COVID-19) pandemic. Geneva: WHO; 2020. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
4. WHO. Emergency use ICD codes for COVID-19 disease outbreak. Geneva: WHO; 2020. Available from: https://www.who.int/classifications/icd/covid19/en/.
5. World Health Organization. Infection prevention and control during health care when COVID-19 is suspected. Available from: https://www.who.int/publications-detail/infection-prevention-and-control-during-health-care-when-novel-coronavirus-(ncov)-infection-is-suspected-20200125.
6. Tagarro A, Epalza С, Santos M, et al. Screening and severity of Coronavirus disease 2019 (COVID-19) in children in Madrid, Spain. JAMA Pediatr. 2020;e201346. doi: 10.1001/jamapediatrics.2020.1346.
7. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) — China, 2020. China CDC Weekly. 2020,2(8):113-122. Available from: http://weekly.chinacdc.cn/en/article/id/e53946e2-c6c4-41e9-9a9b-fea8db1a8f51.
8. Coronavirus Disease 2019 in Children — United States, February 12 — April 2, 2020;69:14. Available from: https://www.cdc.gov/mmwr/volumes/69/wr/pdfs/mm6914e4-H.pdf.
9. Virus Taxonomy: 2019 Release. International Committee on Taxonomy of Viruses. Available from: https://talk.ictvonline.org/taxonomy.
10. Атлас по медицинской микробиологии, вирусологии и иммунологии. Учебное пособие для студентов медицинских вузов / Под ред. А.А. Воробьева, А.С. Быкова. — М.: Медицинское информационное агентство, 2003. — 121 с.
11. Amer HM. Bovine-like coronaviruses in domestic and wild ruminants. Anim Health Res Rev. 2018;19(2):113-124. doi: 10.1017/S1466252318000117.
12. Saif LJ. Animal coronaviruses: what can they teach us about the severe acute respiratory syndrome? Rev Sci Tech. 2004;23(2): 643-660. doi: 10.20506/rst.23.2.1513.
13. Tyrrell DAJ, Bynoe ML. Cultivation of a Novel Type of Commoncold Virus in Organ Cultures. Br Med J. 1965;1(5448):1467-1470. doi: 10.1136/bmj.1.5448.1467.
14. Woo P, Huang Y, Lau S, Yuen KY. Coronavirus genomics and bioinformatics analysis. Viruses. 2010;2(8):1804-1820. doi: 10.3390/v2081803.
15. Gaunt ER, Hardie A, Claas EC, et al. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex realtime PCR method. J Clin Microbiol. 2010;48(8):2940-7294. doi: 10.1128/JCM.00636-10.
16. Lau SK, Lee P, Tsang AK, et al. Molecular epidemiology of human Coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination. J Virol. 2011;85(21):11325-11337. doi: 10.1128/JVI.05512-11.
17. Davis BM, Foxman B, Monto AS, et al. Human coronaviruses and other respiratory infections in young adults on a university campus: prevalence, symptoms, and shedding. Influenza Other Respir Viruses. 2018;12(5):582-590. doi: 10.1111/irv.12563.
18. Kuypers J, Martin ET, Heugel J, et al. Clinical disease in children associated with newly described coronavirus subtypes. Pediatrics. 2007;119(1):e70-e76. doi: 10.1542/peds.2006-1406.
19. Gaunt ER, Hardie A, Claas EC, et al. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex realtime PCR method. J Clin Microbiol. 2010;48(8):2940-2947. doi: 10.1128/JCM.00636-10.
20. Cheng VC, Lau SK, Woo PC, Yuen KY. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin. Microbiol. Rev. 2007;20(4):660-694. doi: 10.1128/CMR.00023-07.
21. Huang Y, Lau SK, Woo PC, Yuen KY. CoVDB: a comprehensive database for comparative analysis of coronavirus genes and genomes. Nucleic Acids Res. 2008;36:D504-D511. doi: 10.1093/nar/gkm754.
22. Menachery VD, Boyd L Yount Jr, et al. SARS-like cluster of circulating bat coronavirus pose threat for human emergence. Nat Med. 2015;21(12):1508-1513. doi:10.1038/nm.3985.
23. Ong XW, Tan K, Chia YP, et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA. 2020;323(16):1610-1612. doi: 10.1001/jama.2020.3227.
24. Wolfel R, Corman MV, Guggemos W, et al. Virological assessment of hospitalized cases of coronavirus disease 2019. Nature. 2020. doi: 10.1038/s41586-020-2196-x.
25. Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV Infection from an asymptomatic contact in Germany. N Engl J Med. 2020;382(10):970-971. doi: 10.1056/NEJMc2001468.
26. Sun K, Viboud C. Impact of contact tracing on SARS-CoV-2 transmission. Lancet Infect Dis. 2020;S1473-3099(20)30357-30351. doi: 10.1016/S1473-3099(20)30357-1.
27. Kucharski JA, Russell WT, Diamond C, et al. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis. 2020;20(5):553-558. doi: 10.1016/S1473-3099(20)30144-4.
28. Bi Q, Wu Y, Mei S, et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. Lancet Infect Dis. 2020;S1473-3099(20)30287-5. doi: 10.1016/S1473-3099(20)30287-5.
29. Liu J, Liao X, Qian S, et al. Community Transmission of Severe Acute Respiratory Syndrome Coronavirus 2, Shenzhen, China, 2020. Emerg Infect Dis. 2020;26(6):1320-1323. doi: 10.3201/eid2606.200239.
30. McAloon CG, Collins BA, Hunt KH, et al. The incubation period of COVID-19 — A rapid systematic review and meta-analysis of observational research. MedRxiv and bioRxiv. 2020. doi:10.1101/2020.04.24.20073957.
31. Wang FS, Zhang C. What to do next to control the 2019-nCoV epidemic? Lancet. 2020;395(10222):391-393. doi: 10.1016/S0140-6736(20)30300-7.
32. Liu W, Li H. COVID-19: Attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism. 2020. Available from: https://chemrxiv.org/articles/COVID-19_Disease_ORF8_and_Surface_Glycoprotein_Inhibit_Heme_Metabolism_by_Binding_to_Porphyrin/11938173.
33. Dong N, Yang X, Ye L, et al. Genomic and protein structure modelling analysis depicts the origin and infectivity of2019-nCoV, a new coronavirus which caused a pneumonia outbreak in Wuhan, China. medRxiv and bioRxiv. 2020. doi: 10.1101/2020.01.20.913368.
34. Mehra MR, Desai SS, Kuy S, et al. Cardiovascular Disease, Drug Therapy and Mortality in Covid-19. N Engl J Med. 2020; NEJMoa2007621. doi: 10.1056/NEJMoa2007621.
35. Wang C, Hornby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020;395(10223): 470-473. doi: 10.1016/S0140-6736(20)30185-9.
36. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel Coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069. doi: 10.1001/jama.2020.1585.
37. Liu K, Fang YY, Deng Y, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei province. Chin Med J. 2020;133(9):1025-1031. doi: 10.1097/CM9.0000000000000744.
38. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5.
39. Wang XF, Yuan J, Zheng YJ, et al. [Retracted: clinical and epidemiological characteristics of 34 children with 2019 novel coronavirus infection in shenzhen (In Chinese)]. Zhonghua Er Ke Za Zhi. 2020;58(0):E008. doi: 10.3760/cma.j.issn.0578-1310.2020.0008.
40. Yan CH, Faraji F, Divya P. Prajapati, et al. Association of chemosensory dysfunction and Covid-19 in patients presenting with influenza-like symptoms. Int Forum Allergy Rhinol. 2020. doi: 10.1111/alr.22579.
41. Moein S, Hashemian MR, Mansourafshar B, et al. Smell dysfunction: a biomarker for COVID-19. Int Forum Allergy Rhinol. 2020. doi: 10.1002/alr.22587.
42. Chen Y, Wang Y, Fleming J, et al. Active or latent tuberculosis increases susceptibility to COVID-19 and disease severity. MedRxiv. 2020. doi: 10.1101/2020.03.10.20033795.
43. Zhu H, Wang L, Fang C, et al. Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia. Transl Pediatr. 2020;9(1):51-60. doi: 10.21037/tp.2020.02.06.
44. Lu X, Zhang L, Du H, et al. SARS-CoV-2 infection in children. NEJM. 2020;382(17):1663-1665. doi: 10.1056/NEJMc2005073.
45. Cao B, Wang Y, Wen D et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 2020;382(19):1787-1799. doi: 10.1056/NEJMoa2001282.
46. Li J, Wang X, Chen J, et al. Association of renin-angiotensin system inhibitors with severity or risk of death in patients with hypertension hospitalized for Coronavirus disease 2019 (COVID-19) infection in Wuhan, China. JAMA Cardiol. 2020;e201624. doi: 10.1001/jamacardio.2020.1624.
47. Lauer SA, Grantz KH, Bi Q, et al. The incubation period of Coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med. 2020;172(9):577-582. doi: 10.7326/M20-0504.
48. Akhtar Hussain, Bishwajit Bhowmik, Nayla Cristina do Vale Moreira. COVID-19 and diabetes: knowledge in progress. Diabetes Research and Clinical Practice. 2020;162:108142. doi: 10.1016/j.diabres.2020.108142.
49. Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020;395(10226):809-815. doi: 10.1016/S0140-6736(20)30360-3.
50. Saccone G, Carbone F, Zullo F. The novel Coronavirus (2019-nCoV) in pregnancy: what we need to know. Eur J Obstet Gynecol Reprod Biol. 2020;S0301-2115(20)30174-3. doi: 10.1016/j.ejogrb.2020.04.006.
51. World Health Organization. Laboratory testing strategy recommendations for COVID-19. Available from: https://apps.who.int/iris/bitstream/handle/10665/331509/WHO-COVID-19-lab_testing-2020.1-eng.pdf.
52. World Health Organization. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected. Geneva; 2020. Available from: https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected.
53. Шляхто Е.В., Конради А.О., Арутюнов Г.П., и др. Руководство по диагностике и лечению болезней системы кровообращения в контексте пандемии COVID-19 // Российский кардиологический журнал. — 2020. — Т. 25. — № 3. — С. 129-148. doi: 10.15829/1560-4071-2020-3-3801.
54. Сборник методических рекомендаций, алгоритмов действий медицинских работников на различных этапах оказания помощи, чек-листов и типовых документов, разработанных на период наличия и угрозы дальнейшего распространения новой коро-навирусной инфекции в Санкт-Петербурге / Под рук. акад. РАН, член корр., проф. Е.В. Шляхто. Версия 1,0 от 17.04.2020. — СПб., 2020. — 157 с.
55. Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19) (версия 6 от 24.04.2020)». — М., 2020. — 142 с.
56. Методические рекомендации «Особенности клинических проявлений и лечения заболевания, вызванного новой коронавирусной инфекцией (COVID-19), у детей (версия 1 от 24.04.2020)». — М., 2020. — 43 с.
57. Ди Ренцо Д.К., Макацария А.Д., Цибизова В.И., и др. О принципах работы перинатального стационара в условиях пандемии коронавируса // Вестник РАМН. — 2020. — Т.75. — №1. — С. 83-92. doi: 10.15690/vramn1324.
58. COVID-19 rapid guideline: managing symptoms (including at the end of life) in the community (NG163). 2020. Available from: https://www.clinicalkey.com/#!/content/nice_guidelines/65-s2.0-NG163.
59. The efficacy of lopinavir plus ritonavir and arbidol for treating with patients with novel coronavirus infection. 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04252885.
60. Sanders MJ, Marguerite L Monogue, et al. Pharmacologic treatments for Coronavirus disease 2019 (COVID-19): a review. JAMA. 2020. doi: 10.1001/jama.2020.6019.
61. Protective role of inhaled steroids for Covid-19 infection. 2020. Available from: https://www.clinicalkey.com/#!/content/clinical_trial/24-s2.0-NCT04331054.
62. Gautret P, Lagier JCh, Parola Ph, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an openlabel non-randomized clinical trial. Int J Antimicrobial Agents. 2020;105949. doi: 10.1016/j.ijantimicag.2020.105949.
63. Geleris J, Sun Y, Platt J, et al. Observational Study of Hydroxychloroquine in Hospitalized Patients with Covid-19. NEJM. 2020; NEJMoa2012410. doi: 10.1056/NEJMoa2012410.
64. Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A. 2020;117(20):10970-10975. doi: 10.1073/pnas.2005615117.
65. Lupia T, Scabini S, Pinna MS, et al. 2019 novel coronavirus (2019-nCoV) outbreak: a new challenge. J Global Antimicrobial Resistance. 2020;21:22-27. doi: 10.1016/j.jgar.2020.02.021.
66. Grein J, Ohmagari N, Shin D, ct al. compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med. 2020; NEJMoa2007016. doi: 10.1056/NEJMoa2007016.
67. Gordon, CJ, Tchesnokov, EP, Feng, JY, et al. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem. 2020;295(15):4773-4779. doi: 10.1074/jbc.AC120.013056.
68. Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020;395(10236):1569-1578. doi: 10.1016/S0140-6736(20)31022-9.
69. Anti-MERS-COV Convalescent Plasma Therapy. 2014. Available from: https://www.clinicalkey.com/#!/content/clinical_trial/24-s2.0-NCT02190799.
70. Ye M, Fu D, Yi R, et al. Treatment with convalescent plasma for COVID-19 patients in Wuhan, China. J Med Virol. 2020. doi: 10.1002/jmv.25882.
71. Phase I/II multicenter trial of lentiviral minigene vaccine (LV-SMENP) of Covid-19 coronavirus. 2020. Available from: https://www.clinicalkey.com/#!/content/clinical_trial/24-s2.0-NCT04276896.
72. A phase I/II study to determine efficacy, safety and immu no-genicity of the candidate Coronavirus Disease (COVID-19) vaccine ChAdOx1 nCoV-19 in UK healthy adult volunteers. 2020. Available from: https://www.clinicalkey.com/#!/content/clinical_trial/24-s2.0-NCT04324606.
73. Hollm-Delgado MG, Stuart EA, Black RE. Acutre lower respiratory infection among bacille Calmette-Guerin (BCG)-vaccinated children. Pediatrics. 2014;133(1):e73-81. doi: 10.1542/peds.2013-2218.
74. Vaudry W. “To BCG or not to BCG, that is the question!”. The challenge of BCG vaccination: why can't we get it right? Paediatr Child Health. 2003;8(3):141-144. doi: 10.1093/pch/8.3.141.
75. Angelidou A, Diray-Arce J, Giulia Conti M, et al. BCG as a case study for precision vaccine development: lessons from vaccine heterogeneity, trained immunity, and immune ontogeny. Front Microbiol. 2020;11:332. doi: 10.3389/fmicb.2020.00332.
76. Miller A, Reandelar JM, Fasciglione K, et al. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. 2020. Available from: https://doi.org/10.1101/2020.03.24.20042937.
77. Murray M. Could BCG vaccination/revaccination protect against SARS-CoV-2 disease? 2020. Available from: https://ghresearch.org/COVID-19/could-bcg-vaccination-revaccination-protect-against-sars-cov2-disease/.
78. Netea MG, Joosten L, Latz E, et al. Trained immunity: a program of innate immune memory in health and disease. Science. 2016;352(6284):aaf1098. doi: 10.1126/science.aaf1098.
79. Floc'h F, Werner GH. Increased resistance to virus infections of mice inoculated with BCG (Bacillus calmette-guerin). Ann Immunol. 1976;127(2):173-186.
80. Kristensen I, Aaby P, Jensen H. Routine vaccinations and child survival: follow up study in Guinea-Bissau, west Africa. Br Med J. 2000;321(7274):1435-1439. doi: 10.1136/bmj.321.7274.1435.
81. BCG Vaccination to Reduce the Impact of COVID-19 in Australian Healthcare Workers Following Coronavirus Exposure (BRACE) Trial. 2020. Available from: https://www.clinicalkey.com/#!/content/clinical_trial/24-s2.0-NCT04327206.
Рецензия
Для цитирования:
Старшинова А.А., Кушнарева Е.А., Малкова А.М., Довгалюк И.Ф., Кудлай Д.А. Новая коронавирусная инфекция: особенности клинического течения, возможности диагностики, лечения и профилактики инфекции у взрослых и детей. Вопросы современной педиатрии. 2020;19(2):123-131. https://doi.org/10.15690/vsp.v19i2.2105
For citation:
Starshinova A.A., Kushnareva E.A., Malkova A.M., Dovgalyuk I.F., Kudlay D.A. New Coronaviral Infection: Features of Clinical Course, Capabilities of Diagnostics, Treatment and Prevention in Adults and Children. Current Pediatrics. 2020;19(2):123-131. (In Russ.) https://doi.org/10.15690/vsp.v19i2.2105