New Coronaviral Infection: Features of Clinical Course, Capabilities of Diagnostics, Treatment and Prevention in Adults and Children
https://doi.org/10.15690/vsp.v19i2.2105
Abstract
First cases of new coronaviral infection were reported in Wuhan, Hubei Province, China in December 2019. The infection had caused the death of more than 100,000 people worldwide by the beginning of April 2020. This review analysed the characteristics of the infection course in adults and children, as well as capabilities of diagnostics, treatment and prevention of COVID-19. It is possible to allocate groups of high risk of development of severe forms of disease (elderly people, people with latent tuberculosis infection, adult patients with severe comorbidity) according to the published data. Currently there is limited epidemiological data on the prevalence, morbidity and mortality of COVID-19 in the child population. However, it is already possible to conclude that 90% of cases in children population have mild, moderate and asymptomatic course of the disease. Treatment of patients with COVID-19 is limited due to the lack of means for etiotropic therapy and the possibility of using of only symptomatic therapy. There are no vaccines for COVID-19 prevention.
Keywords
About the Authors
Anna A. StarshinovaRussian Federation
Saint Petersburg.
Disclosure of interest:
Not declared.
Ekaterina A. Kushnareva
Russian Federation
Saint Petersburg.
Disclosure of interest:
Not declared.
Anna M. Malkova
Russian Federation
Saint Petersburg.
Disclosure of interest:
Not declared.
Irina F. Dovgalyuk
Russian Federation
Saint Petersburg.
Disclosure of interest:
Not declared.
Dmitry A. Kudlay
Russian Federation
Moscow.
Disclosure of interest:
Not declared.
References
1. Zhu N, Zhang D, Wang W, et al. Novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8): 727-733. doi: 10.1056/NEJMoa2001017.
2. Dong Y, Mo X, Hu Y, et al. Epidemiological characteristics of 2143 pediatric patients with 2019 coronavirus disease in china. Pediatrics. 2020. doi: 10.1542/peds.2020-0702.
3. WHO. Coronavirus disease (COVID-19) pandemic. Geneva: WHO; 2020. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
4. WHO. Emergency use ICD codes for COVID-19 disease outbreak. Geneva: WHO; 2020. Available from: https://www.who.int/classifications/icd/covid19/en/.
5. World Health Organization. Infection prevention and control during health care when COVID-19 is suspected. Available from: https://www.who.int/publications-detail/infection-prevention-and-control-during-health-care-when-novel-coronavirus-(ncov)-infection-is-suspected-20200125.
6. Tagarro A, Epalza С, Santos M, et al. Screening and severity of Coronavirus disease 2019 (COVID-19) in children in Madrid, Spain. JAMA Pediatr. 2020;e201346. doi: 10.1001/jamapediatrics.2020.1346.
7. The Epidemiological Characteristics of an Outbreak of 2019 Novel Coronavirus Diseases (COVID-19) — China, 2020. China CDC Weekly. 2020,2(8):113-122. Available from: http://weekly.chinacdc.cn/en/article/id/e53946e2-c6c4-41e9-9a9b-fea8db1a8f51.
8. Coronavirus Disease 2019 in Children — United States, February 12 — April 2, 2020;69:14. Available from: https://www.cdc.gov/mmwr/volumes/69/wr/pdfs/mm6914e4-H.pdf.
9. Virus Taxonomy: 2019 Release. International Committee on Taxonomy of Viruses. Available from: https://talk.ictvonline.org/taxonomy.
10. Atlas po meditsinskoy mikrobiologii, virusologii i immunologii. Uchebnoye posobiye dlya studentov meditsinskikh vuzov. Ed by A.A. Vorob'yev, A.S. Bykov. Moscow: Meditsinskoye informatsionnoye agentstvo; 2003. 121 p. (In Russ).
11. Amer HM. Bovine-like coronaviruses in domestic and wild ruminants. Anim Health Res Rev. 2018;19(2):113-124. doi: 10.1017/S1466252318000117.
12. Saif LJ. Animal coronaviruses: what can they teach us about the severe acute respiratory syndrome? Rev Sci Tech. 2004;23(2): 643-660. doi: 10.20506/rst.23.2.1513.
13. Tyrrell DAJ, Bynoe ML. Cultivation of a Novel Type of Commoncold Virus in Organ Cultures. Br Med J. 1965;1(5448):1467-1470. doi: 10.1136/bmj.1.5448.1467.
14. Woo P, Huang Y, Lau S, Yuen KY. Coronavirus genomics and bioinformatics analysis. Viruses. 2010;2(8):1804-1820. doi: 10.3390/v2081803.
15. Gaunt ER, Hardie A, Claas EC, et al. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex realtime PCR method. J Clin Microbiol. 2010;48(8):2940-7294. doi: 10.1128/JCM.00636-10.
16. Lau SK, Lee P, Tsang AK, et al. Molecular epidemiology of human Coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination. J Virol. 2011;85(21):11325-11337. doi: 10.1128/JVI.05512-11.
17. Davis BM, Foxman B, Monto AS, et al. Human coronaviruses and other respiratory infections in young adults on a university campus: prevalence, symptoms, and shedding. Influenza Other Respir Viruses. 2018;12(5):582-590. doi: 10.1111/irv.12563.
18. Kuypers J, Martin ET, Heugel J, et al. Clinical disease in children associated with newly described coronavirus subtypes. Pediatrics. 2007;119(1):e70-e76. doi: 10.1542/peds.2006-1406.
19. Gaunt ER, Hardie A, Claas EC, et al. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex realtime PCR method. J Clin Microbiol. 2010;48(8):2940-2947. doi: 10.1128/JCM.00636-10.
20. Cheng VC, Lau SK, Woo PC, Yuen KY. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin. Microbiol. Rev. 2007;20(4):660-694. doi: 10.1128/CMR.00023-07.
21. Huang Y, Lau SK, Woo PC, Yuen KY. CoVDB: a comprehensive database for comparative analysis of coronavirus genes and genomes. Nucleic Acids Res. 2008;36:D504-D511. doi: 10.1093/nar/gkm754.
22. Menachery VD, Boyd L Yount Jr, et al. SARS-like cluster of circulating bat coronavirus pose threat for human emergence. Nat Med. 2015;21(12):1508-1513. doi:10.1038/nm.3985.
23. Ong XW, Tan K, Chia YP, et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA. 2020;323(16):1610-1612. doi: 10.1001/jama.2020.3227.
24. Wolfel R, Corman MV, Guggemos W, et al. Virological assessment of hospitalized cases of coronavirus disease 2019. Nature. 2020. doi: 10.1038/s41586-020-2196-x.
25. Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV Infection from an asymptomatic contact in Germany. N Engl J Med. 2020;382(10):970-971. doi: 10.1056/NEJMc2001468.
26. Sun K, Viboud C. Impact of contact tracing on SARS-CoV-2 transmission. Lancet Infect Dis. 2020;S1473-3099(20)30357-30351. doi: 10.1016/S1473-3099(20)30357-1.
27. Kucharski JA, Russell WT, Diamond C, et al. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis. 2020;20(5):553-558. doi: 10.1016/S1473-3099(20)30144-4.
28. Bi Q, Wu Y, Mei S, et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. Lancet Infect Dis. 2020;S1473-3099(20)30287-5. doi: 10.1016/S1473-3099(20)30287-5.
29. Liu J, Liao X, Qian S, et al. Community Transmission of Severe Acute Respiratory Syndrome Coronavirus 2, Shenzhen, China, 2020. Emerg Infect Dis. 2020;26(6):1320-1323. doi: 10.3201/eid2606.200239.
30. McAloon CG, Collins BA, Hunt KH, et al. The incubation period of COVID-19 — A rapid systematic review and meta-analysis of observational research. MedRxiv and bioRxiv. 2020. doi:10.1101/2020.04.24.20073957.
31. Wang FS, Zhang C. What to do next to control the 2019-nCoV epidemic? Lancet. 2020;395(10222):391-393. doi: 10.1016/S0140-6736(20)30300-7.
32. Liu W, Li H. COVID-19: Attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism. 2020. Available from: https://chemrxiv.org/articles/COVID-19_Disease_ORF8_and_Surface_Glycoprotein_Inhibit_Heme_Metabolism_by_Binding_to_Porphyrin/11938173.
33. Dong N, Yang X, Ye L, et al. Genomic and protein structure modelling analysis depicts the origin and infectivity of2019-nCoV, a new coronavirus which caused a pneumonia outbreak in Wuhan, China. medRxiv and bioRxiv. 2020. doi: 10.1101/2020.01.20.913368.
34. Mehra MR, Desai SS, Kuy S, et al. Cardiovascular Disease, Drug Therapy and Mortality in Covid-19. N Engl J Med. 2020; NEJMoa2007621. doi: 10.1056/NEJMoa2007621.
35. Wang C, Hornby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020;395(10223): 470-473. doi: 10.1016/S0140-6736(20)30185-9.
36. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel Coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069. doi: 10.1001/jama.2020.1585.
37. Liu K, Fang YY, Deng Y, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei province. Chin Med J. 2020;133(9):1025-1031. doi: 10.1097/CM9.0000000000000744.
38. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5.
39. Wang XF, Yuan J, Zheng YJ, et al. [Retracted: clinical and epidemiological characteristics of 34 children with 2019 novel coronavirus infection in shenzhen (In Chinese)]. Zhonghua Er Ke Za Zhi. 2020;58(0):E008. doi: 10.3760/cma.j.issn.0578-1310.2020.0008.
40. Yan CH, Faraji F, Divya P. Prajapati, et al. Association of chemosensory dysfunction and Covid-19 in patients presenting with influenza-like symptoms. Int Forum Allergy Rhinol. 2020. doi: 10.1111/alr.22579.
41. Moein S, Hashemian MR, Mansourafshar B, et al. Smell dysfunction: a biomarker for COVID-19. Int Forum Allergy Rhinol. 2020. doi: 10.1002/alr.22587.
42. Chen Y, Wang Y, Fleming J, et al. Active or latent tuberculosis increases susceptibility to COVID-19 and disease severity. MedRxiv. 2020. doi: 10.1101/2020.03.10.20033795.
43. Zhu H, Wang L, Fang C, et al. Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia. Transl Pediatr. 2020;9(1):51-60. doi: 10.21037/tp.2020.02.06.
44. Lu X, Zhang L, Du H, et al. SARS-CoV-2 infection in children. NEJM. 2020;382(17):1663-1665. doi: 10.1056/NEJMc2005073.
45. Cao B, Wang Y, Wen D et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 2020;382(19):1787-1799. doi: 10.1056/NEJMoa2001282.
46. Li J, Wang X, Chen J, et al. Association of renin-angiotensin system inhibitors with severity or risk of death in patients with hypertension hospitalized for Coronavirus disease 2019 (COVID-19) infection in Wuhan, China. JAMA Cardiol. 2020;e201624. doi: 10.1001/jamacardio.2020.1624.
47. Lauer SA, Grantz KH, Bi Q, et al. The incubation period of Coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med. 2020;172(9):577-582. doi: 10.7326/M20-0504.
48. Akhtar Hussain, Bishwajit Bhowmik, Nayla Cristina do Vale Moreira. COVID-19 and diabetes: knowledge in progress. Diabetes Research and Clinical Practice. 2020;162:108142. doi: 10.1016/j.diabres.2020.108142.
49. Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020;395(10226):809-815. doi: 10.1016/S0140-6736(20)30360-3.
50. Saccone G, Carbone F, Zullo F. The novel Coronavirus (2019-nCoV) in pregnancy: what we need to know. Eur J Obstet Gynecol Reprod Biol. 2020;S0301-2115(20)30174-3. doi: 10.1016/j.ejogrb.2020.04.006.
51. World Health Organization. Laboratory testing strategy recommendations for COVID-19. Available from: https://apps.who.int/iris/bitstream/handle/10665/331509/WHO-COVID-19-lab_testing-2020.1-eng.pdf.
52. World Health Organization. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected. Geneva; 2020. Available from: https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected.
53. Shlyakho EV, Konradi AO, Arutyunov GP, et al. Guidelines for the diagnosis and treatment of circulatory diseases in the context of the COVID-19 pandemic. Rossijskij kardiologicheskij zhurnal. 2020;25(3): 129-148. (In Russ). doi: 10.15829/1560-4071-2020-3-3801.
54. Sbornik metodicheskikh rekomendatsiy, algoritmov deystviy meditsinskikh rabotnikov na razlichnykh etapakh okazaniya pomoshchi, chek-listov i tipovykh dokumentov, razrabotannykh na period nalichiya i ugrozy dal'neyshego rasprostraneniya novoy koronavirusnoy infektsii v Sankt-Peterburge. Ed by E.V. Shlyakhto. Versiya 1,0 ot 17.04.2020. St. Petersburg; 2020. 157 р. (In Russ).
55. Vremennyye metodicheskiye rekomendatsii “Profilaktika, diagnostika i lecheniye novoy koronavirusnoy infektsii (COVID-19) (versiya 6 ot 24.04.2020)”. Moscow; 2020. 142 р. (In Russ).
56. Metodicheskiye rekomendatsii “Osobennosti klinicheskikh proyavleniy i lecheniya zabolevaniy, vyzvannogo novoy koronavirusnoy infektsii (COVID-19) u detey (versiya 1 ot 24.04.2020)». Moscow; 2020. 43 р. (In Russ).
57. Di Renzo Gian Carlo, Makatsariya AD, Tsibizova VI, et al. Obstetric and perinatal care units functioning during the COVID-19 pandemic. Annals of the Russian Academy of Medical Sciences. 2020;75(1):83-92. (In Russ). doi: 10.15690/vramn1324.
58. COVID-19 rapid guideline: managing symptoms (including at the end of life) in the community (NG163). 2020. Available from: https://www.clinicalkey.com/#!/content/nice_guidelines/65-s2.0-NG163.
59. The efficacy of lopinavir plus ritonavir and arbidol for treating with patients with novel coronavirus infection. 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04252885.
60. Sanders MJ, Marguerite L Monogue, et al. Pharmacologic treatments for Coronavirus disease 2019 (COVID-19): a review. JAMA. 2020. doi: 10.1001/jama.2020.6019.
61. Protective role of inhaled steroids for Covid-19 infection. 2020. Available from: https://www.clinicalkey.com/#!/content/clinical_trial/24-s2.0-NCT04331054.
62. Gautret P, Lagier JCh, Parola Ph, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an openlabel non-randomized clinical trial. Int J Antimicrobial Agents. 2020;105949. doi: 10.1016/j.ijantimicag.2020.105949.
63. Geleris J, Sun Y, Platt J, et al. Observational Study of Hydroxychloroquine in Hospitalized Patients with Covid-19. NEJM. 2020; NEJMoa2012410. doi: 10.1056/NEJMoa2012410.
64. Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A. 2020;117(20):10970-10975. doi: 10.1073/pnas.2005615117.
65. Lupia T, Scabini S, Pinna MS, et al. 2019 novel coronavirus (2019-nCoV) outbreak: a new challenge. J Global Antimicrobial Resistance. 2020;21:22-27. doi: 10.1016/j.jgar.2020.02.021.
66. Grein J, Ohmagari N, Shin D, ct al. compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med. 2020; NEJMoa2007016. doi: 10.1056/NEJMoa2007016.
67. Gordon, CJ, Tchesnokov, EP, Feng, JY, et al. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem. 2020;295(15):4773-4779. doi: 10.1074/jbc.AC120.013056.
68. Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020;395(10236):1569-1578. doi: 10.1016/S0140-6736(20)31022-9.
69. Anti-MERS-COV Convalescent Plasma Therapy. 2014. Available from: https://www.clinicalkey.com/#!/content/clinical_trial/24-s2.0-NCT02190799.
70. Ye M, Fu D, Yi R, et al. Treatment with convalescent plasma for COVID-19 patients in Wuhan, China. J Med Virol. 2020. doi: 10.1002/jmv.25882.
71. Phase I/II multicenter trial of lentiviral minigene vaccine (LV-SMENP) of Covid-19 coronavirus. 2020. Available from: https://www.clinicalkey.com/#!/content/clinical_trial/24-s2.0-NCT04276896.
72. A phase I/II study to determine efficacy, safety and immu no-genicity of the candidate Coronavirus Disease (COVID-19) vaccine ChAdOx1 nCoV-19 in UK healthy adult volunteers. 2020. Available from: https://www.clinicalkey.com/#!/content/clinical_trial/24-s2.0-NCT04324606.
73. Hollm-Delgado MG, Stuart EA, Black RE. Acutre lower respiratory infection among bacille Calmette-Guerin (BCG)-vaccinated children. Pediatrics. 2014;133(1):e73-81. doi: 10.1542/peds.2013-2218.
74. Vaudry W. “To BCG or not to BCG, that is the question!”. The challenge of BCG vaccination: why can't we get it right? Paediatr Child Health. 2003;8(3):141-144. doi: 10.1093/pch/8.3.141.
75. Angelidou A, Diray-Arce J, Giulia Conti M, et al. BCG as a case study for precision vaccine development: lessons from vaccine heterogeneity, trained immunity, and immune ontogeny. Front Microbiol. 2020;11:332. doi: 10.3389/fmicb.2020.00332.
76. Miller A, Reandelar JM, Fasciglione K, et al. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. 2020. Available from: https://doi.org/10.1101/2020.03.24.20042937.
77. Murray M. Could BCG vaccination/revaccination protect against SARS-CoV-2 disease? 2020. Available from: https://ghresearch.org/COVID-19/could-bcg-vaccination-revaccination-protect-against-sars-cov2-disease/.
78. Netea MG, Joosten L, Latz E, et al. Trained immunity: a program of innate immune memory in health and disease. Science. 2016;352(6284):aaf1098. doi: 10.1126/science.aaf1098.
79. Floc'h F, Werner GH. Increased resistance to virus infections of mice inoculated with BCG (Bacillus calmette-guerin). Ann Immunol. 1976;127(2):173-186.
80. Kristensen I, Aaby P, Jensen H. Routine vaccinations and child survival: follow up study in Guinea-Bissau, west Africa. Br Med J. 2000;321(7274):1435-1439. doi: 10.1136/bmj.321.7274.1435.
81. BCG Vaccination to Reduce the Impact of COVID-19 in Australian Healthcare Workers Following Coronavirus Exposure (BRACE) Trial. 2020. Available from: https://www.clinicalkey.com/#!/content/clinical_trial/24-s2.0-NCT04327206.
Review
For citations:
Starshinova A.A., Kushnareva E.A., Malkova A.M., Dovgalyuk I.F., Kudlay D.A. New Coronaviral Infection: Features of Clinical Course, Capabilities of Diagnostics, Treatment and Prevention in Adults and Children. Current Pediatrics. 2020;19(2):123-131. (In Russ.) https://doi.org/10.15690/vsp.v19i2.2105