Hearing Loss Effect on the Educational Process in Children and Adolescents
https://doi.org/10.15690/vsp.v19i4.2134
Abstract
There are about 466 million people (6.1% of global population) with hearing impairment registered in the world according to the data from WHO experts. Their number exceeds 13 million in Russian Federation, and more than 1 million are children. The results of the universal audiological screening program for newborns has shown that 1 child per 1000 newborns is born deaf, another 2–3 children grow deaf during the first years of life. The number of people with hearing impairment will reach 900 million people by 2050 according to the WHO forecasts. Prevention and early diagnosis of hearing loss and rehabilitation of children with such disorders are necessary for avoiding problems with social integration. This review presents the analysis of cognitive abilities development in children and adolescents with different types and degrees of hearing loss with regard to different approaches in their management and rehabilitation.
Keywords
About the Authors
Aleksandr V. PashkovRussian Federation
Moscow
Disclosure of interest: Not declared.
Leyla S. Namazova-Baranova
Russian Federation
Moscow, Belgorod
Disclosure of interest: Not declared.
Elena A. Vishneva
Russian Federation
Moscow
Disclosure of interest: Not declared.
Irina V. Naumova
Russian Federation
Moscow
Disclosure of interest: Not declared.
Irina V. Zelenkova
Russian Federation
Moscow
Disclosure of interest: Not declared.
References
1. Vos T, Barber RM, Bell B, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(9995):743–800. doi: 10.1016/S0140-6736(15)60692-4.
2. Wilson BS. Getting a decent (but sparse) signal to the brain for users of cochlear implants. Hear Res. 2015;322:24–38. doi: 10.1016/j.heares.2014.11.009.
3. Zrenner E, Bartz-Schmidt KU, Benav H, et al. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci. 2011;278(1711):1489–1497. doi: 10.1098/rspb.2010.1747.
4. Valentin NS, Hageman KN, Dai C, et al. Development of a multichannel vestibular prosthesis prototype by modification of a commercially available cochlear implant. IEEE Trans Neural Syst Rehabil Eng. 2013;21(5):830–839. doi: 10.1109/TNSRE.2013.2259261.
5. Niparko JK, Tobey EA, Thal DJ, et al. Spoken language development in children following cochlear implantation. JAMA. 2010; 303(15):1498–1506. doi: 10.1001/jama.2010.451.
6. Kral A. Auditory critical periods: a review from system’s perspective. Neuroscience. 2013;247:117–133. doi: 10.1016/j.neuroscience.2013.05.021.
7. Tallal P. Fast ForWord®: the birth of the neurocognitive training revolution. Prog Brain Res. 2013;207:175–207. doi: 10.1016/B978-0-444-63327-9.00006-0.
8. Conway CM, Pisoni DB, Kronenberger WG. The importance of sound for cognitive sequencing abilities: the auditory scaffolding hypothesis. Curr Dir Psychol Sci. 2009;18(5):275–279. doi: 10.1111/j.1467-8721.2009.01651.x.
9. Conway CM, Karpicke J, Anaya EM, et al. Nonverbal cognition in deaf children following cochlear implantation: motor sequen cing disturbances mediate language delays. Dev Neuropsychol. 2011; 36(2):237–254. doi: 10.1080/87565641.2010.549869.
10. Kral A, Sharma A. Developmental neuroplasticity after cochlear implantation. Trends Neurosci. 2012;35(2):111–122. doi: 10.1016/j.tins.2011.09.004.
11. Hubener M, Bonhoeffer T. Neuronal plasticity: beyond the critical period. Cell. 2014;159(4):727–737. doi: 10.1016/j.cell.2014.10.035.
12. Whiteus C, Freitas C, Grutzendler J. Perturbed neural activity disrupts cerebral angiogenesis during a postnatal critical period. Nature. 2014;505(7483):407–411. doi: 10.1038/nature12821.
13. Tillein J, Heid S, Lang E, et al. Development of brainstem-evoked responses in congenital auditory deprivation. Neural Plast. 2012; 2012:182767. doi: 10.1155/2012/182767.
14. Tong L, Strong MK, Kaur T, et al. Selective deletion of cochlear hair cells causes rapid agedependent changes in spiral ganglion and cochlear nucleus neurons. J Neurosci. 2015;35(20):7878–7891. doi: 10.1523/JNEUROSCI.2179-14.2015.
15. McBride EG, Rubel EW, Wang Y. Afferent regulation of chicken auditory brainstem neurons: rapid changes in phosphorylation of elongation factor 2. J Comp Neurol. 2013;521(5):1165–1183. doi: 10.1002/cne.23227.
16. Maurer D, Werker JF. Perceptual narrowing during infancy: a comparison of language and faces. Dev Psychobiol. 2014;56(2): 154–178. doi: 10.1002/dev.21177.
17. Lin JJ, Mula M, Hermann BP. Uncovering the neurobehavioural comorbidities of epilepsy over the lifespan. Lancet. 2012;380(9848): 1180–1192. doi: 10.1016/S0140-6736(12)61455-X.
18. Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol. 1997;387(2): 167–178. doi: 10.1002/(sici)1096-9861(19971020)387:23.0.co;2-z.
19. Werker J. Perceptual foundations of bilingual acquisition in infancy. Ann N Y Acad Sci. 2012;1251:50–61. doi: 10.1111/j.1749-6632.2012.06484.x.
20. Chun S, Bayazitov IT, Blundon JA, Zakharenko SS. Thalamocortical long-term potentiation becomes gated after the early critical period in the auditory cortex. J Neurosci. 2013;33(17):7345–7357. doi: 10.1523/JNEUROSCI.4500-12.2013.
21. Blundon JA, Zakharenko SS. Presynaptic gating of postsynaptic synaptic plasticity: a plasticity filter in the adult auditory cortex. Neuroscientist. 2013;19(5):465–478. doi: 10.1177/1073858413482983.
22. Kral A, O’Donoghue GM. Profound deafness in childhood. N Engl J Med. 2010;363(15):1438–1450. doi: 10.1056/NEJMra0911225.
23. Sharma A, Nash AA, Dorman M. Cortical development, plasticity and re-organization in children with cochlear implants. Int J Lang Commun Disord. 2009;42(4):272–279. doi: 10.1016/j.jcomdis.2009.03.003.
24. Daikhes NA, Tavartkiladze GA, Yablonskii SV, et al. Universal’nyi audiologicheskii skrining novorozhdennykh i detei pervogo goda: posobie dlya vrachei. FGU “Nauchno-klinicheskii tsentr otorinolaringologii” Roszdrava; FGU “Ros. nauchno-prakticheskii tsentr audiologii i slukhoprotezirovaniya” Roszdrava. Moscow; 2008. 28 p. (In Russ).
25. Daikhes NA, Pashkov AV, Petrov SM, et al. Modifitsirovannyi sposob registratsii stapendial’nogo refleksa u implantirovannykh patsientov pri nastroike rechevogo protsessora. Rossiiskaya otorinolaringologiya. 2007;(3(28));19–21. (In Russ).
26. Daikhes NA, Pashkov AV, Yablonskii SV. Metody issledovaniya slukha: uchebno-metodicheskoe posobie. FGU “Nauchnoklinicheskii tsentr otorinolaringologii FMBA Rossii”. Moscow; 2009. — 119 p. (In Russ).
27. Grychyn’skii M., Khoffmann B., Yas’kevich M., et al. Guide to an Audiology and Hearing Aid. Lyatkovskii YaB, ed.; translation from Polish Daikhes N.A., ed. Moscow; 2009. 240 p. (In Russ).
28. Patent № 2414168 Russian Federation, IPC А61В 5/0484 (2006.01), А61В 5/12 (2006.01). Method of Determining Optimal Parametres of Hearing Aid: № 2010112164/14: declare 29.03.2010: publ. 20.03.2011. Dajkhes NA, Pashkov AV, Starokha AV, et al. 8 p. (In Russ).
29. Moeller MP. Current state of knowledge: psychosocial development in children with hearing impairment. Ear Hear. 2007; 28(6):729–739. doi: 10.1097/AUD.0b013e318157f033.
30. Kvam MH, Loeb M, Tambs K. Mental health in deaf adults: symptoms of anxiety and depression among hearing and deaf individuals. J Deaf Stud Deaf Educ. 2007;12(1):1–7. doi: 10.1093/deafed/enl015.
31. Remine MD, Brown MP. Comparison of the Prevalence of Mental Health Problems in Deaf and Hearing Children and Adolescents in Australia. Aust N Z J Psychiatry. 2010;44(4):351–357. doi: 10.3109/00048670903489866.
32. Cawthon SW, Fink B, Schoffstall S, Wendel E. In the Rearview Mirror: Social Skill Development in Deaf Youth, 1990–2015. Am Ann Deaf. 2018;162(5):479–485. doi: 10.1353/aad.2018.0005.
33. Supalla SJ, Cripps JH, Byrne AP. Why American Sign Language Gloss Must Matter. Am Ann Deaf. 2017;161(5):540–551. doi: 10.1353/aad.2017.0004.
34. Rosen RS, Hartman MC, Wang Y. “Thinking-for-Writing”: A Prolegomenon on Writing Signed Languages. Am Ann Deaf. 2017; 161(5):528–536. doi: 10.1353/aad.2017.0002.
35. Wang Y, Williams C. Are we hammering square pegs into round holes? An investigation of the meta-analyses of reading research with students who are d/Deaf or hard of hearing and students who are hearing. Am Ann Deaf. 2014;159(4):323–345. doi: 10.1353/aad.2014.0029.
36. Mayer C, Trezek BJ. Literacy Outcomes in Deaf Students with Cochlear Implants: Current State of the Knowledge. J Deaf Stud Deaf Educ. 2018;23(1):1–16. doi: 10.1093/deafed/enx043.
37. Luckner JL, Handley CM. A summary of the reading comprehension research undertaken with students who are deaf or hard of hearing. Am Ann Deaf. 2008;153(1):6–36. doi: 10.1353/aad.0.0006.
38. Davis LE. Acute Bacterial Meningitis. Continuum (Minneap Minn). 2018;24(5, Neuroinfectious Disease):1264–1283. doi: 10.1212/CON.0000000000000660.
39. Olbrich KJ, Muller D, Schumacher S, et al. Systematic Review of Invasive Meningococcal Disease: Sequelae and Quality of Life Impact on Patients and Their Caregivers. Infect Dis Ther. 2018; 7(4):421–438. doi: 10.1007/s40121-018-0213-2.
40. Ramakrishnan M, Ulland AJ, Steinhardt LC, et al. Sequelae due to bacterial meningitis among African children: a systematic literature review. BMC Med. 2009;7:47. doi: 10.1186/1741-7015-7-47.
41. Sabatini C, Bosis S, Semino M, et al. Clinical presentation of meningococcal disease in childhood. J Prev Med Hyg. 2012;53(2):116–119.
42. Synnes A, Hicks M. Neurodevelopmental Outcomes of Preterm Children at School Age and Beyond. Clin Perinatol. 2018;45(3): 393–408. doi: 10.1016/j.clp.2018.05.002.
43. Burnett AC, Cheong JLY, Doyle LW. Biological and Social Influences on the Neurodevelopmental Outcomes of Preterm Infants. Clin Perinatol. 2018;45(3):485–500. doi: 10.1016/j.clp.2018.05.005.
44. Melo RS, Lemos A, Paiva GS, et al. Vestibular rehabilitation exercises programs to improve the postural control, balance and gait of children with sensorineural hearing loss: A systematic review. Int J Pediatr Otorhinolaryngol. 2019;127:109650. doi: 10.1016/j.ijporl.2019.109650.
45. van Kamp I, Davies H. Noise and health in vulnerable groups: a review. Noise Health. 2013;15(64):153–159. doi: 10.4103/1463-1741.112361.
46. van Zon A, van der Heijden GJ, van Dongen TM, et al. Antibiotics for otitis media with effusion in children. Cochrane Database Syst Rev. 2012;(9):CD009163. doi: 10.1002/14651858.CD009163.pub2.
47. Maberly GF, Haxton DP, van der Haar F. Iodine deficiency: consequences and progress toward elimination. Food Nutr Bull. 2003;24(4 Supp l): S91-S98. doi: 10.1177/15648265030244S205.
48. Rohlfs AK, Friedhoff J, Bohnert A, et al. Unilateral hearing loss in children: a retrospective study and a review of the current literature. Eur J Pediatr. 2017;176(4):475–486. doi: 10.1007/s00431-016-2827-2.
49. Theunissen SC, Rieffe C, Netten AP, et al. Psychopathology and its risk and protective factors in hearing-impaired children and adolescents: a systematic review. JAMA Pediatr. 2014;168(2): 170–177. doi: 10.1001/jamapediatrics.2013.3974.
50. Sharma A, Cardon G. Cortical development and neuroplasticity in Auditory Neuropathy Spectrum Disorder. Hear Res. 2015; 330(Pt B):221–232. doi: 10.1016/j.heares.2015.06.001.
51. Glick H, Sharma A. Cross-modal Plasticity in Developmental and Age-Related Hearing Loss: Clinical Implications. Hear Res. 2017; 343:191–201. doi: 10.1016/j.heares.2016.08.012.
52. Ratnanather JT. Structural neuroimaging of the altered brain stemming from pediatric and adolescent hearing loss-Scientific and clinical challenges. Wiley Interdiscip Rev Syst Biol Med. 2020; 12(2):e1469. doi: 10.1002/wsbm.1469.
53. Patent № 2652733 Russian Federation, IPC А61В 5/0484 (2006.01), А61В 11/00 (2006.01). Method of adjusting the speech processor of the cochlear implant system: № 2017107712: declare 09.03.2017: publ. 28.04.2018. Pashkov AV, Naumova IV, Gadaleva SV, et al. 5 p. (In Russ).
54. Naumova IV, Pashkov AV, Gadaleva SV, et al. Our experience of recor ding the auditory steady-state responses in the patients using cochlear implant system. Rossiiskaya otorinolaringologiya. 2019; 18(2):57–63. (In Russ). doi: 10.18692/1810-4800-2019-2-57-63.
55. Patent № 2610829 Russian Federation, IPC A61B 5/00 (2006.01), A61B 5/0484 (2006.01), A61B 5/12(2006.01). Method for determining dynamic range of hearing in patients with hearing aid: № 2015154552: declare 21.12.2015: publ. 15.02.2017. Namazova-Baranova LS, Dotsenko RN, Polunina TA, et al. 5 p. (In Russ).
56. Pashkov AV, Samkova AS. The sensorineural component of hearing loss in children with exudative otitis. Vrach. 2014;(2):9–62. (In Russ).
57. Maslova OI, Baranov AA, NamazovaBaranova LS, et al. Modern aspects of studying the cognitive sphere in child development. Pediatricheskaya farmakologiya — Pediatric pharmacology. 2012;9(6):72–78. (In Russ).
Review
For citations:
Pashkov A.V., Namazova-Baranova L.S., Vishneva E.A., Naumova I.V., Zelenkova I.V. Hearing Loss Effect on the Educational Process in Children and Adolescents. Current Pediatrics. 2020;19(4):272-278. (In Russ.) https://doi.org/10.15690/vsp.v19i4.2134