Preview

Current Pediatrics

Advanced search

Etiopathogenetic Similarities of Combined Forms of Localized Scleroderma and Vitiligo

https://doi.org/10.15690/vsp.v19i6.2147

Abstract

Vitiligo is a common skin disease characterized by idiopathic progressive skin hypomelanosis. Vitiligo is associated with several comorbid autoimmune diseases such as localized scleroderma. This article demonstrates the general development mechanism of these pathologies, as well as the key aspect of cross-effect between autoimmune diseases on the molecular level. Recently, dermatologists have noted the increasing number of patients suffering from combined pathologies. Such patients (in pediatrics) have torpid course of disease and no pathognomonic symptoms. That exaggerates the diagnostics and adequate therapy prescription. This leads to increased awareness among physicians of different specialties on possible combinations, clinical presentation and pathogenesis aspects of such conditions.

About the Authors

Nikolay N. Murashkin
National Medical Research Center of Children’s Health; Sechenov First Moscow State Medical University (Sechenov University); Central State Medical Academy of Department of Presidential Affairs; Research Institute of Pediatrics and Children’s Health in “Central Clinical Hospital of the Russian Academy of Sciences”
Russian Federation
Moscow
Disclosure of interest:

Nikolay N. Murashkin — receiving research grants from pharmaceutical companies Jansen, Eli Lilly, Novartis. Scientific consultant of Galderma, Pierre Fabre, Bayer, LEO Pharma, Pfizer, AbbVie, Amryt Pharma



Alena A. Savelova
Central State Medical Academy of Department of Presidential Affairs
Russian Federation
Moscow
Disclosure of interest:

The other contributors confirmed the absence of a reportable conflict of interests



Roman A. Ivanov
National Medical Research Center of Children’s Health
Russian Federation
Moscow
Disclosure of interest:

The other contributors confirmed the absence of a reportable conflict of interests



Eduard T. Ambarchian
National Medical Research Center of Children’s Health
Russian Federation
Moscow
Disclosure of interest:

Eduard T. Ambarchian — scientific consultant of Eli Lilly, Novartis, AbbVie, Amryt Pharma, Jansen companies



Alexander I. Materikin
National Medical Research Center of Children’s Health
Russian Federation
Moscow
Disclosure of interest:

Alexander I. Materikin, Roman V. Epishev — scientific consultant of Eli Lilly, Novartis, AbbVie, Amryt Pharma companies



Roman V. Epishev
National Medical Research Center of Children’s Health
Russian Federation
Moscow
Disclosure of interest:

Alexander I. Materikin, Roman V. Epishev — scientific consultant of Eli Lilly, Novartis, AbbVie, Amryt Pharma companies



Leonid A. Opryatin
National Medical Research Center of Children’s Health
Russian Federation
Moscow
Disclosure of interest:

The other contributors confirmed the absence of a reportable conflict of interests



References

1. Dahir AM, Thomsen SF. Comorbidities in vitiligo: comprehensive review. Int J Dermatol. 2018;57(10):1157–1164. doi: 10.1111/ijd.14055.

2. Sawicki J, Siddha S, Rosen C. Vitiligo and associated autoimmune disease: retrospective review of 300 patients. J Cutan Med Surg. 2012;16(4):261–266. doi: 10.1177/120347541201600408.

3. Sheth VM, Guo Y, Qureshi AA. Comorbidities associated with vitiligo: a ten-year retrospective study. Dermatology. 2013; 227(4): 311–315. doi: 10.1159/000354607.

4. Lotti T, D’Erme AM. Vitiligo as a systemic disease. Clin Dermatol. 2014;32(3):430–434. doi: 10.1016/j.clindermatol.2013.11.011.

5. Taieb A, Alomar A, Böhm M, et al. The writing group of the Vitiligo European Task Force (VETF) in cooperation with the European Academy of Dermatology and Venereology (EADV) and the Union Européenne desecins Spécialistes (UEMS). Guidelines for the management of vitiligo: The European Dermatology Forum consensus. Br J Dermatol. 2013;168(1):5–19. doi: 10.1111/j.1365-2133.2012.11197.x.

6. Lotti T, Hautmann G, Hercogova J. Vitiligo: disease or symptom? From the confusion of the past to current doubts. In: Lotti T, Hercogova J, eds. Vitiligo. Problems and solutions. New York, NY, Basel: Marcel Dekker, Inc.; 2004. pp. 1–14.

7. Le Poole C, Boissy RE. Vitiligo. Semin Cutan Med Surg. 1997; 16(1):3–14. doi: 10.1016/s1085-5629(97)80030-2.

8. Parsad D, Dogra S, Kanwar AJ. Quality of life in patients with vitiligo. Health Qual Life Outcomes. 2003;1:58. doi: 10.1186/1477-7525-1-58.

9. Boissy RE, Manga P. On the etiology of contact/occupational vitiligo. Pigment Cell Res. 2004;17(3):208–214. doi: 10.1111/j.1600-0749.2004.00130.

10. Ezzedine K, Lim HW, Suzuki T, et al. Revised classification/ nomenclature of vitiligo and related issues: the Vitiligo Global Issues Consensus Conference. Pigment Cell Melanoma Res. 2012; 25(3):E1–13. doi: 10.1111/j.1755-148X.2012.00997.

11. Eleftheriadou V, Thomas K, van Geel N, et al. Developing core outcome set for vitiligo clinical trials: international e-Delphi consensus. Pigment Cell Melanoma Res. 2015;28(3):363–369. doi: 10.1111/pcmr.12354.

12. Harris JE, Harris TH, Weninger W, et al. A mouse model of vitiligo with focused epidermal depigmentation requires IFN- for autoreactive CD8+ T-cell accumulation in the skin. J Invest Dermatol. 2012;132(7):1869–1876. doi: 10.1038/jid.2011.463.

13. Shi F, Erf GF. IFN-, IL-21, and IL-10 co-expression in evolving autoimmune vitiligo lesions of Smyth line chickens. J Invest Dermatol. 2012;132(3 Pt 1):642–649. doi: 10.1038/jid.2011.377.

14. Yang L, Wei Y, Sun Y, et al. Interferon-gamma Inhibits Melanogenesis and Induces Apoptosis in Melanocytes: A Pivotal Role of CD8+ Cytotoxic T Lymphocytes in Vitiligo. Acta Derm Venereol. 2015;95(6):664–670. doi: 10.2340/00015555-2080.

15. Singh RK, Lee KM, Vujkovic-Cvijin I, et al. The role of IL-17 in vitiligo: A review. Autoimmun Rev. 2016;15(4):397–404. doi: 10.1016/j.autrev.2016.01.004.

16. Zhou L, Shi YL, Li K, et al. Increased circulating Th17 cells and elevated serum levels of TGF-beta and IL-21 are correla ted with human non-segmental vitiligo development. Pigment Cell Melanoma Res. 2015;28(3):324–329. doi: 10.1111/pcmr.12355.

17. Shi F, Kong BW, Song JJ, et al. Understanding mechanisms of vitiligo development in Smyth line of chickens by transcriptomic microarray analysis of evolving autoimmune lesions. BMC Immunol. 2012;13:18. doi: 10.1186/1471-2172-13-18.

18. Webb KC, Tung R, Winterfield LS, et al. Tumour necrosis factor- inhibition can stabilize disease in progressive vitiligo. Br J Dermatol. 2015;173(3):641–650. doi: 10.1111/bjd.14016.

19. Cui T, Zhang W, Li S. Oxidative Stress-Induced HMGB1 Release From Melanocytes: A Paracrine Mechanism Underlying the Cutaneous Inflammation in Vitiligo. J Invest Dermatol. 2019;139(10): 2174–2184.e4. doi: 10.1016/j.jid.2019.03.1148.

20. Praetorius C, Grill C, Stacey SN, et al. A polymorphism in IRF4 affects human pigmentation through a tyrosinase-dependent MITF/ TFAP2A pathway. Cell. 2013;155(5):1022–1033. doi: 10.1016/j.cell.2013.10.022.

21. Regazzetti C, Joly F, Marty C. Transcriptional Analysis of Vitiligo Skin Reveals the Alteration of WNT Pathway: A Promising Target for Repigmenting Vitiligo Patients. J Invest Dermatol. 2015; 135(12):3105–3114. doi: 10.1038/jid.2015.335.

22. Roberts GHL, Paul S, Yorgov D, et al. Family Clustering of Autoimmune Vitiligo Results Principally from Polygenic Inheritance of Common Risk Alleles. Am J Hum Genet. 2019;105(2):364–372. doi: 10.1016/j.ajhg.2019.06.013.

23. Machado do Nascimento L, Silva de Castro CC, Medeiros Fava V, et al. Genetic and biochemical evidence implicates the butyrylcholinesterase gene BCHE in vitiligo pathogenesis. Exp Dermatol. 2015;24(12):976–978. doi: 10.1111/exd.12810.

24. Tarle RG, Silva de Castro CC, do Nascimento LM, Mira MT. Polymorphism of the E-cadherin gene CDH1 is associated with susceptibility to vitiligo. Exp Dermatol. 2015;24(4):300–302. doi: 10.1111/exd.12641.

25. Takehara K, Moroi Y, Nakabayashi Y, Ishibashi Y. Antinuclear antibodies in localized scleroderma. Arthritis Rheum. 1983;26(5): 612–616. doi: 10.1002/art.1780260506.

26. Mayes MD, Lacey JV, Jr, Beebe-Dimmer J, et al. Prevalence, incidence, survival, and disease characteristics of systemic sclerosis in a large US population. Arthritis Rheum. 2003;48(8):2246–2255. doi: 10.1002/art.11073.

27. Peterson LS, Nelson AM, Su WP, et al. The epidemiology of morphea (localized scleroderma) in Olmsted County 1960–1993. J Rheumatol. 1997; 24(1):73–80.

28. Torok KS, Kurzinski K, Kelsey C, et al. Peripheral blood cytokine and chemokine profiles in juvenile localized scleroderma: T-helper cell-associated cytokine profiles. Semin Arthritis Rheum. 2015;45:284–293. 10.1016/j.semarthrit.2015.06.006.

29. Wolfe RE, Brelsfold WG. Soluble interleukin-2 receptors in systemic lupus erythematosus. Arthritis Rheum. 1988;31(6):729–35. doi: 10.1002/art.1780310605.

30. Degiannis D, Seibold JR, Czarnecki M, et al. Soluble interleukin-2 receptors in patients with systemic sclerosis: clinical and laboratory correlations. Arthritis Rheum. 1990;33(3):375–380. doi: 10.1002/art.1780330310.

31. Takehara K, Sato S. Localized Scleroderma Is an Autoimmune Disorder. Rheumatology (Oxford). 2005;44(3):274–279. doi: 10.1093/rheumatology/keh487.

32. Ihn H, Fujimoto M, Sato S, et al. Increased levels of circulating intercellular adhesion molecule-1 in patients with localized scleroderma. J Am Acad Dermatol. 1994;31(4):591–595. doi: 10.1016/s0190-9622(94)70221-7.

33. O’Brien JC, Rainwater YB, Malviya N, et al. Transcriptional and Cytokine Profiles Identify CXCL9 as a Biomarker of Disease Activity in Morphea. J Invest Dermatol. 2017;137(8):1663–1670. doi: 10.1016/j.jid.2017.04.008.

34. Anaya JM, Castiblanco J, Rojas-Villarraga A, et al. The multiple autoimmune syndromes. A clue for the autoimmune tautology. Clin Rev Allergy Immunol. 2012;43(3):256–264. doi: 10.1007/s12016-012-8317-z.

35. Ubaldo HDC, Castro CCS. Coexistence of segmental vitiligo, scleroderma en coup de sabre and cleft lip on the same hemiface: association with mosaicism? An Bras Dermatol. 2019;94(2): 248–250. doi: 10.1590/abd1806-4841.20198110.

36. Bonifati C, Impara G, Morrone A, et al. Simultaneous occurrence of linear scleroderma and homolateral segmental vitiligo. J Eur Acad Dermatol Venereol. 2006;20(1):63–65. doi: 10.1111/j.1468-3083.2005.01336.x.

37. Horberg M, Lauesen SR, Daugaard-Jensen J, Kjaer I. Linear scleroderma en coup de sabre including abnormal dental development. Eur Arch Paediatr Dent. 2015;16(2):227–231. doi: 10.1007/s40368-014-0148-6.

38. Van Geel N, Speeckaert R. Segmental Vitiligo. Dermatol Clin. 2017;35(2):145–150. doi: 10.1016/j.det.2016.11.005.

39. Colman SD, Williams CA, Wallace MR. Benign neurofibromas in type 1 neurofibromatosis (NF1) show somatic deletions of the NF1 gene. Nat Genet. 1995;11(1):90–92. doi: 10.1038/ng0995-90.

40. Biesecker LG, Spinner NB. A genomic view of mosaicism and human disease. Nat Rev Genet. 2013;14(5):307–320. doi: 10.1038/nrg3424.

41. Kurosaka H, Iulianella A, Williams T, Trainor PA. Disrupting hedgehog and WNT signaling interactions promotes cleft lip pathogenesis. J Clin Invest. 2014;124(4):1660–1671. doi: 10.1172/JCI72688.

42. Vitiligo medical and surgical management. Gupta S, Olsson MJ, Parsad D, et al, eds. 1st ed., Kindle Edition. Wiley Blackwell; 2018.

43. Chen YF, Yang PY, Hu DN, et al. Treatment of vitiligo by transplantation of 120 cases. J Am Acad Dermatol. 2004;51(1):68–74. doi: 10.1016/j.jaad.2003.12.013.

44. Cario-Andre M, Pain C, Gauthier Y, Taieb A. The Melanocytorrhagic Hypothesis of Vitiligo Tested on Pigmented, Stressed, Reconstructed Epidermis. Pigment Cell Res. 2007;20(5):385–393. doi: 10.1111/j.1600-0749.2007.00396.x.

45. Rodrigues M, Ezzedine K, Hamzavi I, et al. New discoveries in the pathogenesis and classification of vitiligo. J Am Acad Dermatol. 2017;77(1):1–13. doi: 10.1016/j.jaad.2016.10.048.

46. Strassner JP, Harris JE. Understanding mechanisms of autoimmunity through translational research in vitiligo. Curr Opin Immunol. 2016;43:81–88. doi:10.1016/j.coi.2016.09.008.

47. Boniface K, Seneschal J, Picardo M, Taieb A. Vitiligo: Focus on Clinical Aspects, Immunopathogenesis, and Therapy. Clin Rev Allergy Immunol. 2017;54(1):52–67. doi: 10.1007/s12016-017-8622-7.


Review

For citations:


Murashkin N.N., Savelova A.A., Ivanov R.A., Ambarchian E.T., Materikin A.I., Epishev R.V., Opryatin L.A. Etiopathogenetic Similarities of Combined Forms of Localized Scleroderma and Vitiligo. Current Pediatrics. 2020;19(6):452-459. (In Russ.) https://doi.org/10.15690/vsp.v19i6.2147

Views: 646


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)