Preview

Вопросы современной педиатрии

Расширенный поиск

ПРЕБИОТИКИ КАК ФУНКЦИОНАЛЬНЫЙ КОМПОНЕНТ ПИТАНИЯ РЕБЕНКА

https://doi.org/10.15690/vsp.v12i5.792

Полный текст:

Аннотация

В обзоре освещен современный взгляд на микробиоценоз кишечника и возможность влияния на него пребиотическими компонентами пищи. Состояние кишечной микробиоты является важнейшим фактором здоровья ребенка. Как показывают последние исследования, известное постоянство микробиоты каждого индивидуума во многом определено генетически. Кишечная микрофлора оказывает непосредственное влияние на формирование иммунной системы ребенка, обеспечивает защиту от патогенов, участвует во всех видах обмена. При этом кишечный микробиоценоз в свою очередь сам зависит от состояния макроорганизма и экзогенных факторов, важнейшим из которых является питание. По сути, можно говорить о совместной эволюции питания, кишечного микробиоценоза и слизистой оболочки кишечника с ассоциированной с ней лимфоидной тканью. Поступление с питанием ингредиентов, способствующих вегетированию «полезной» флоры, является действенным механизмом «диетического манипулирования» биоценозом кишечника. Подробно рассматриваются биологические эффекты пребиотиков. Олигосахариды грудного молока обладают рядом биологических эффектов, далеко выходящих за рамки пребиотического действия. Однако введение в состав детских молочных смесей и каш пребиотических компонентов с доказанным эффектом также придает этим продуктам профилактические и лечебно-профилактические свойства.

Об авторе

С. Г. Макарова
Научный центр здоровья детей РАМН, Москва; Первый Московский государственный медицинский университет им. И.М. Сеченова
Россия


Список литературы

1. Turnbaugh P. J., Ley R. E., Hamady M. et al. The human microbiome project. Nature. 2007; 449 (7164): 804–810.

2. Backhed F., Ding H., Wang T., Hooper L. V., Koh G. Y. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA. 2004; 101 (44): 15718–15723.

3. Ordovas J. M., Mooser V. Metagenomics: the role of the microbiome in cardiovascular diseases. Curr. Opin. Lipidol. 2006; 17 (2): 157–161.

4. Belda-Ferre P., Alcaraz L. D., Cabrera-Rubio R. et al. The oral metagenome in health and disease. ISME J. 2011. Doi:10.1038/ ismej.2011.85.

5. Kau A. L., Ahern P. P., Griffin N. W. et al. Human nutrition, the gut microbiome and the immune system. Nature. 2011; 474 (7351): 327–336.

6. Goodacre R. Metabolomics of a superorganism. J. Nutr. 2007; 137 (Suppl. 1): 259–266.

7. Wylie K., Truty R.M., Sharpton T. J. et al. Novel bacterial taxa in the human microbiome. PLoS ONE. Published 13 Jun 2012.

8. Li K., Bihan M., Yooseph Sh. et al. Analyses of the microbial diversity across the human microbiome. PLoS ONE. Published 13 Jun 2012.

9. Huycke M. M., Gaskins H. R. Commensal bacteria, redox stress, and colorectal cancer: mechanisms and models. Exp. Biol. Med. (Maywood). 2004; 229: 586–597.

10. Isolauri E., Kalliomaki M., Laitinen K., Salminen S. Modulation of the maturing gut barrier and microbiota: a novel target in allergic disease. Curr. Pharm. Des. 2008; 14: 1368–1375.

11. Proal A. D., Albert P. J., Marshall T. G. Autoimmune disease in the era of the metagenome. Autoimmun. Rev. 2009.

12. Koeth R. A., Wang Z., Levison B. S. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013; 19 (5): 576–585. 13. Devaraj S., Hemarajata P., Versalovic J. The human gut microbiome and body metabolism: implications for obesity and diabetes. Clin Chem. 2013; 59 (4): 617–628. 14. Mai V. Dietary modification of the intestinal microbiota. Nutr. Rev. 2004; 62: 235–242.

13. Khachatryan Z. A., Ktsoyan Z. A., Manukyan G. P. et al. Predominant role of host genetics in controlling the composition of gut microbiota. PLoS ONE. 2008; 3: 3064.

14. Ursova N. I. Osnovnye Fiziologicheskie Funktsii Normal'noy Mikroflory i Formirovanie Mikrobiotsenoza u Detey [Basic Physiological Functions of Normal Microflora and Formation of Microbiocenosis in Children]. Voprosy prakticheskoy pediatrii [Problems of Practical Pediatrics]. 2006; 1 (1): 51–56.

15. Cantarel Brandi L., Lombard V., Henrissat B. Complex carbohydrate utilization by the healthy human microbiome. PLoS ONE. Published 13 Jun 2012/info: doi/10.1371

16. Shenderov B. A. Funktsional'noe Pitanie i Ego Rol' v Profilaktike Metabolicheskogo Sindroma [Functional Nutrition and its Role in the Prevention of Metabolic Syndrome]. Moscow, DeLi Print Publ., 2008. 319 p.

17. Feng T., Elson C. O. Adaptive immunity in the host-microbiota dialog. Mucosal Immunol. 2011; 4: 15–21.

18. Hooper L. V., Wong M. H., Thelin A. et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science. 2001; 291: 881–884.

19. Sebra J. J. Influences of microbiota on intestinal immune system development. Am. J. Clin. Nutr. 1999; 69 (Suppl.): 1046–1051.

20. Stappenbeck T. S., Hooper L. V., Gordon J. I. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc. Nat. Acad. Sci. USA. 2002; 99: 15451–15455.

21. Lu L., Walker W. A. Pathologic and physiologic interactions of bacteria with the gastrointestinal epithelium. Am. J. Clin. Nutr. 2001; 73 (Suppl.): 1124–1130.

22. Shenderov B. A. Meditsinskaya Mikrobnaya Ekologiya i Funktsional'noe Pitanie. T. 1: Mikroflora Cheloveka i Zhivotnykh i Ee Funktsii [Medical Microbial Ecology and Functional Food. Volume 1: Microflora of Humans and Animals and its Function]. Moscow, GRANT Publ., 1998. 288 p.

23. Simhon A., Douglas J. R., Drasar B. S., Soothill J. F. Effect of feeding on infants faecal flora. Arch. Dis. Child. 1982; 57: 54–58.

24. Murch S. H. The immunologic basis for intestinal food allergy. Curr. Opin. Gastroenterol. 2000; 16: 552–557.

25. Makarova S. G. Rol' Kishechnogo Mikrobiotsenoza v Formirovanii Oral'noy Tolerantnosti u Detey [Role of Intestinal Microbiocenosis in the Formation of Oral Tolerance in Children]. Rossiyskiy allergologicheskiy zhurnal [Russian Allergology Journal]. 2008; 2: 32–46.

26. Murgas Torrazza R., Neu J. The developing intestinal microbiome and its relationship to health and disease in the neonate. J. Perinatol. 2011; 31 (Suppl. 1): 29–34.

27. Kafarskaya L. I., Inzhevatkina S.M., Volodin N. N. et al. Terapevticheskiy Potentsial Probiotikov: Optimizatsiya Immunnogo Otveta i Vosstanovlenie Ekosistemy Kishechnika [Therapeutic Potential of Probiotics: Immune Response Optimization and Intestinal Ecosystem Restoration]. Voprosy detskoy dietologii [Problems of Pediatric Nutritiology]. 2005; 3 (1): 72–75.

28. Khromova S.S., Shkoporov A. N., Efimov B. A. et al. Mikroflora Kishechnika i Mekhanizmy Immunoregulyatsii [Intestinal Microflora and Immune Regulation Mechanisms]. Voprosy detskoy dietologii [Problems of Pediatric Nutritiology]. 2005; 3 (1): 92–96.

29. Shui W., Gilmore S. A., Sheu L., Liu J., Keasling J. D., Bertozzi C. R. Quantitative proteomic profiling of host-pathogen interactions: The macrophage response to Mycobacterium tuberculosis lipids. J. Proteome Res. 2009; 8 (1): 282–289.

30. Koenig J. E., Spor A., Scalfone N., Fricker A. D., Stombaugh J., Knight R., Angenent L. T., Ley R. E. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. USA. 2011; 108 (Suppl. 1): 4578–4585.

31. Roberfroid M. B. Concepts in functional foods: The case of inulin and oligofructose. J. Nutr. 2007; 137: 2709–2716.

32. Borovik T. E., Ladodo K. S. Klinicheskaya Dietologiya Detskogo Vozrasta. Rukovodstvo dlya Vrachey [Children's Clinical Dietetics. Manual for Physicians]. Moscow, MIA Publ., 2008. 606 p.

33. Gibson G. R., Probert H. M., Van Loo J., Rastall R. A., Rober froid M. B. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr. Res. Rev. 2004, 17 (2): 259–275.

34. Belmer S. V. Primenenie Prebiotikov dlya Profilaktiki i Lecheniya Narusheniy Mikroflory u Detey [Application of Prebiotics for the Prevention and Treatment of Disorders in Children Microflora]. Moscow, VUNMTs Publ., 2005. 15 p.

35. Heinig M. J. Host defense benefits of breastfeeding for the infant. Effect of breastfeeding duration and exclusivity. Pediatr. Clin. North Am. 2001; 48: 105–123.

36. Donovan S. M., Wang M., Li M. et al. Host-microbe interactions in the neonatal intestine: Role of human milk oligosaccharides. Am. Soc. Nutr. Adv. Nutr. 2012; 3: 450–455.

37. Turroni F., Milani C., van Sinderen D., Ventura M. Genetic strategies for mucin metabolism in Bifidobacterium bifidum PRL2010: an example of possible human-microbe co-evolution. Gut Microbes. 2011; 2: 183–189.

38. Sela D. A., Chapman J., Adeuya A., Kim J. H., Chen F. et al. The genome sequence of Bifidobacterium longum subsp. reveals adaptations for milk utilization within the infant microbiome. Proc. Natl. Acad. Sci. USA. 2008; 105: 18964–18969.

39. Turroni F., Peano C., Pass D. A., Foroni E., Severgnini M. et al. Diversity of Bifidobacteria within the infant gut microbiota. PLoS ONE. 2012; 7 (5): 36957. Doi:10.1371/journal.pone.0036957.

40. Freil R., Lauener R. P., Crameri R., O’Mahony L. Microbiota and dietary interactions — an update to the hygiene hypothesis? Allergy. 2012; 67: 451–461.

41. Cummings J. H., Macfarlane G. T. Gastrointestinal effects of prebiotics. Brit. J. Nutr. 2002; 87 (Suppl. 2): 145–151.

42. Russel F.D., Burgin-Maunder C. S. Distinguishing health benefits of eicosapentaenoic and docosahexaenoic acids. Mar. Drugs. 2012; 10 (11): 2535–2359.

43. Field C., van Aerde J., Robinson L. et al. Effect of providing a formula supplemented with long-chain polyunsaturated fatty acids on immunity in full-term neonates. Brit. J. Nutr. 2008; 99: 91–99.

44. Van Kooyk Y., Rabinovich G. A. Protein-glycan interactions in the control of innate and adaptive immune responses. Nat. Immunol. 2008; 9: 593–601.

45. Rabinovich G. A., Toscano M. A. Turning‘sweet’ on immunity: galectin-glycan interactionsin immune tolerance and inflammation. Nat. Rev. Immunol. 2009; 9: 338–352.

46. Erbacher A., Gieseke F., Handgretinger R., Muller I. Dendritic cells: functional aspectsof glycosylation and lectins. Hum. Immunol. 2009; 70: 308–312.

47. Svajger U., Anderluh M., Jeras M., Obermajer N. C-type lectin DC-SIGN: anadhesion, signalling and antigen-uptake molecule that guides dendritic cells inimmunity. Cell Signal. 2010; 22: 1397–1405.

48. de Kivit S., Kraneveld A. D., Garssen J., Willemsen L. E. Glycan recognition at the interface of the intestinal immune system: target for immune modulation via dietary components. Eur. J. Pharmacol. 2011; 668: 124–132.

49. van Kooyk Y. C-type lectins on dendriticcells: key modulators for the induction ofimmune responses. Biochem. Soc. Trans. 2008; 6: 1478–1481.

50. Pishchevaya Allergiya. Bolezni Detskogo Vozrasta ot A do Ya [Food Allergy. Childhood Diseases from A to Z]. Edited by A. A. Baranov, L. S. Namazova-Baranova, T. E. Borovik, S. G. Makarova. Moscow, Pediatr Publ., 2013. 160 p.

51. Kon’ I.Ya., Kurkova V. I., Abramova T. V. Rezul'taty Mul'titsentrovogo Issledovaniya Klinicheskoy Effektivnosti Sukhoy Adaptirovannoy Molochnoy Smesi s Pishchevymi Voloknami v Pitanii Detey Pervogo Goda Zhizni [Multicenter Study Results of Clinical Efficacy of the Dry Adapted Milk Formula with Dietary Fibers in Infants’ Nutrition]. Voprosy prakticheskoy pediatrii [Problems of Practical Pediatrics]. 2010; 5 (2): 29–37.

52. Rao S., Srinivasjois R., Patole S. Prebiotic supplementation in full-term neonates: a systematic review of randomized controlled trials. Arch. Pediatr. Adolesc. Med. 2009; 163: 755–764.

53. Boehm G., Lidestri M., Casetta P., Jelinek J., Negretti F., Stahl B., Marini A. Supplementation of a bovine milk formula with an oligosaccharide mixture increases counts of faecal bifidobacteria in preterm infants. Arch. Dis. Child Fetal Neonatal. 2002; 86: 178–181.

54. Boem G., Moro G., Fanaro S. et al. Soderzhanie Galakto oligosakharidov kak Prebiotikov v Smesyakh dlya Iskusstvennogo Vskarmlivaniya [Galactooligosaccharide Content as Prebiotics in Mixtures for Artificial Feeding]. Voprosy detskoy dietologii [Problems of Pediatric Nutritiology]. 2005; 3 (4): 29–37.

55. Gruber C., van Stuijvenberg M., Mosca F. et al. MIPS 1 Working Group. Reduced occurrence of early atopic dermatitis because of immunoactive prebiotics among low-atopy-risk infants. J. Allergy Clin. Immunol. 2010; 126: 791–797.

56. Moro G. et al. A mixture of prebiotics oligosaccharides reduces the incidence of atopic dermatitis during the first six months of age. Arch. Child. 2006; 91: 814–819.

57. Arslanoglu S. et al. Early dietary intervention with a mixture of prebiotics oligosaccharides incidence of allergic manifestations and infections during the first two years of life. J. Nutr. 2008; 138: 1091–1095.

58. Arslanoglu S. et al. ESPGHAN committee on nutrition. J. Pediatr. Gastroenterol. Nutr. 2011; 52 (2): 238–250.

59. Makarova S. G., Borovik T. E. Balabolkin I. I. et al. Sovre mennyy Vzglyad na Rol' Kishechnogo Biotsenoza pri Pishchevoy Allergii u Detey i Podkhody k Ego Korrektsii [Modern View on the Role of Intestinal Biocenosis at Food Allergy in Children and Approaches to its Correction]. Rossiyskiy allergologicheskiy zhurnal [Russian Allergology Journal]. 2012; 5: 36–45.

60. Sorvacheva T. N., Pashkevich V. V., Efimov B. A., Kon’ I.Ya. Klinicheskaya Effektivnost' Primeneniya Smesi «Semper Bifidus» u Detey Pervykh Mesyatsev Zhizni s Funktsional'nymi Zaporami [Clinical Efficacy of Semper Bifidus Mixture in Infants with Functional Constipation]. Detskiy doktor [Children’s Doctor]. 2001; 1: 27–29.

61. Supplementation of infant formula with probiotics and/or prebiotics. A systematic review and comment by the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2011; 52 (2): 238–250.

62. Netrebenko O. K. Kashi v Pitanii Grudnykh Detey [Porridges in the Nutrition of Infants]. Voprosy sovremennoy pediatrii [Current Pediatrics]. 2005; 4 (4): 20–24.

63. Skvortsova V. A., Borovik T. E., Ladodo K. S. et al. Sovremennye Kashi Promyshlennogo Proizvodstva v Pitanii Detey Rannego Vozrasta [Modern Porridges of Industrial Production in the Nutrition of Children of Early Age]. Voprosy sovremennoy pediatrii [Current Pediatrics]. 2004; 3 (1): 61–64.

64. Saavedra J. M., Tschernia A. Human studies with prebiotics: clinical implications. Brit. J. Nutr. 2002; 87: 241–246.

65. Borovik T. E., Ladodo K. S., Makarova S. G., Skvortsova V. A. Sovremennyy Vzglyad na Rol' Detskikh Kash v Pitanii Detey Grudnogo Vozrasta [Modern View on the Role of Children's Porridges in the Nutrition of Infants]. Lechashchiy vrach [Doctor in Charge]. 2006; 7: 37–42.

66. Kalliomaki M., Kirjavainen P., Eerola E., Kero P., Salminen S., Isolauri E. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J. Allergy Clin. Immunol. 2001; 107 (1): 129–134.

67. Songjinda P., Nakayama J., Tateyama A., Tanaka S., Tsubouchi M., Kiyohara C., Shirakawa T., Sonomoto K. Differences in developing intestinal microbiota between allergic and nonallergic infants: a pilot study in Japan. Biosci. Biotechnol. Biochem. 2007; 71 (9): 2338–2342.


Для цитирования:


Макарова С.Г. ПРЕБИОТИКИ КАК ФУНКЦИОНАЛЬНЫЙ КОМПОНЕНТ ПИТАНИЯ РЕБЕНКА. Вопросы современной педиатрии. 2013;12(5):8-17. https://doi.org/10.15690/vsp.v12i5.792

For citation:


Makarova S.G. PREBIOTICS AS A «FUNCTIONAL» COMPONENT OF CHILD NUTRITION. Current pediatrics. 2013;12(5):8-17. (In Russ.) https://doi.org/10.15690/vsp.v12i5.792

Просмотров: 239


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)