Preview

Вопросы современной педиатрии

Расширенный поиск

Состав микробиоты кожи у детей и его влияние на патогенез акне

https://doi.org/10.15690/vsp.v20i5.2319

Полный текст:

Аннотация

Акне — распространенное в подростковом возрасте хроническое воспалительное заболевание кожи. Поражение косметически значимых зон неизбежно приводит к снижению качества жизни пациентов. В обзоре рассмотрены современные методы определения микробиоты кожи, описаны видовой состав микроорганизмов у новорожденных и его изменение в ходе взросления человека. Рассмотрено участие в патогенезе акне микроорганизмов Cutibacterium acnes, доминирующих в микробиоте тех областей кожи, в которых преобладают сальные железы.

Об авторах

Л. С. Круглова
Центральная государственная медицинская академия
Россия

121359, Москва, ул. Маршала Тимошенко, д. 19, стр. 1А.


Раскрытие интересов:

Автор статьи подтвердил отсутствие конфликта интересов, о котором необходимо сообщить.



Н. В. Грязева
Центральная государственная медицинская академия
Россия

Грязева Наталья Владимировна - кандидат медицинских наук, доцент кафедры дерматовенерологии и косметологии ЦГМА.
121359, Москва, ул. Маршала Тимошенко, д. 19, стр. 1А.


Раскрытие интересов:

Автор статьи подтвердил отсутствие конфликта интересов, о котором необходимо сообщить.



А. В. Тамразова
Центральная государственная медицинская академия
Россия

121359, Москва, ул. Маршала Тимошенко, д. 19, стр. 1А.


Раскрытие интересов:

Автор статьи подтвердил отсутствие конфликта интересов, о котором необходимо сообщить.



Список литературы

1. Gollnick H, Cunliffe W, Berson D, et al. Management of acne: a report from a Global Alliance to Improve Outcomes in Acne. J Am Acad Dermatol. 2003;49(Suppl 1):S1-S37. doi: 10.1067/mjd.2003.618

2. Gao Z, Tseng CH, Pei Z, Blaser MJ. Molecular analysis of human forearm superficial skin bacterial biota. Proc Natl Acad Sci USA. 2007;104(8):2927-2932. doi: 10.1073/pnas.0607077104

3. Chuah SY, Goh CL. The Impact of Post-Acne Scars on the Quality of Life Among Young Adults in Singapore. J Cutan Aesthet Surg. 2015;8(3):153-158. doi: 10.4103/0974-2077.167272

4. Agak GW, Kao S, Ouyang K, et al. Phenotype and Antimicrobial Activity of Th17 Cells Induced by Propionibacterium acnes Strains Associated with Healthy and Acne Skin. J Invest Dermatol. 2018;138(2):316-324. doi: 10.1016/j.jid.2017.07.842

5. Fitz-Gibbon S, Tomida S, Chiu BH, et al. Propionibacterium acnes strain populations in the human skin microbiome associated with acne. J Invest Dermatol. 2013;133(9):2152-2160. doi: 10.1038/jid.2013.21

6. Barnard E, Shi B, Kang D, Craft N, Li H. The balance of metagenomic elements shapes the skin microbiome in acne and health. Sci Rep 2016;6:39491. doi: 10.1038/srep39491

7. Achermann Y, Goldstein EJ, Coenye T, Shirtliff ME. Propionibacterium acnes: From commensal to opportunistic biofilm-associated implant pathogen. Clin Microbiol Rev. 2014;27(3):419-440. doi: 10.1128/CMR.00092-13

8. Fercek I, Lugovic-Mihic L, Tambic-Andrasevic A, et al. Features of the Skin Microbiota in Common Inflammatory Skin Diseases. Life (Basel). 2021;11(9):962. Published 2021 Sep 14. doi: 10.3390/life11090962

9. Gaitanis G, Magiatis P, Hantschke M, Bassukas ID, Velegraki A. The Malassezia genus in skin and systemic diseases. Clin Microbiol Rev. 2012;25(1):106-141. doi: 10.1128/CMR.00021-1

10. Dekio I, Hayashi H, Sakamoto M, et al. Detection of potentially novel bacterial components of the human skin microbiota using culture-independent molecular profiling. J Med Microbiol. 2005;54(Pt 12):1231-1238. doi: 10.1099/jmm.0.46075-0

11. Leyden JJ, McGinley KJ, Nordstrom KM, Webster GF. Skin microflora. J Invest Dermatol. 1987;88(3 Suppl):65s-72s. doi: 10.1111/1523-1747.ep12468965

12. Ma Y, Madupu R, Karaoz U, et al. Human papillomavirus community in healthy persons, defined by metagenomics analysis of human microbiome project shotgun sequencing data sets. J Virol. 2014;88(9):4786-4797. doi: 10.1128/JVI.00093-14

13. Foulongne V, Sauvage V, Hebert C, et al. Human skin microbiota: high diversity of DNA viruses identified on the human skin by high throughput sequencing. PLoS One. 2012;7(6):e38499. doi: 10.1371/journal.pone.0038499

14. Hall JB, Cong Z, Imamura-Kawasawa Y, et al. Isolation and Identification of the Follicular Microbiome: Implications for Acne Research. J Invest Dermatol. 2018;138(9):2033-2040. doi: 10.1016/j.jid.2018.02.038

15. Clooney AG, Fouhy F, Sleator RD, et al. Comparing Apples and Oranges?: Next Generation Sequencing and Its Impact on Microbiome Analysis. PLoS One. 2016;11(2):e0148028. Published 2016 Feb 5. doi: 10.1371/journal.pone.0148028

16. Kong HH, Andersson B, Clavel T, et al. Performing Skin Microbiome Research: A Method to the Madness. J Invest Dermatol. 2017;137(3):561-568. doi: 10.1016/j.jid.2016.10.033

17. Leiby JS, McCormick K, Sherrill-Mix S, et al. Lack of detection of a human placenta microbiome in samples from preterm and term deliveries. Microbiome. 2018;6(1):196. Published 2018 Oct 30. doi: 10.1186/s40168-018-0575-4

18. Dunn AB, Jordan S, Baker BJ, Carlson NS. The Maternal Infant Microbiome: Considerations for Labor and Birth. MCN Am J Matern Child Nurs. 2017;42(6):318-325. doi: 10.1097/NMC.0000000000000373

19. Montoya-Williams D, Lemas DJ, Spiryda L, et al. The Neonatal Microbiome and Its Partial Role in Mediating the Association between Birth by Cesarean Section and Adverse Pediatric Outcomes. Neonatology. 2018;114(2):103-111. doi: 10.1159/000487102

20. Ward TL, Dominguez-Bello MG, Heisel T, Al-Ghalith G, Knights D, Gale CA. Development of the Human Mycobiome over the First Month of Life and across Body Sites. mSystems. 2018;3(3):e00140-17. Published 2018 Mar 6. doi: 10.1128/mSystems.00140-17

21. Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med. 2016;22(3):250-253. doi: 10.1038/nm.4039

22. Younge NE, Araujo-Perez F, Brandon D, Seed PC. Early-life skin microbiota in hospitalized preterm and full-term infants. Microbiome. 2018;6:98. doi: 10.1186/s40168-018-0486-4

23. Nikolovski J, Stamatas GN, Kollias N, Wiegand BC. Barrier function and water-holding and transport properties of infant stratum corneum are different from adult and continue to develop through the first year of life. J Invest Dermatol. 2008;128(7):1728-1736. doi: 10.1038/sj.jid.5701239

24. Underwood MA, Sohn K. The Microbiota of the Extremely Preterm Infant. Clin Perinatol. 2017;44(2):407-427. doi: 10.1016/j.clp.2017.01.005

25. O'Neill CA, Monteleone G, McLaughlin JT, Paus R. The gut skin axis in health and disease: A paradigm with therapeutic implications. Bioessays. 2016;38(11):1167-1176. doi: 10.1002/bies.201600008

26. Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol. 2018;16(3):143-155. doi: 10.1038/nrmicro.2017.157

27. Hannigan GD, Meisel JS, Tyldsley AS, et al. The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome. mBio. 2015;6(5):e01578-15. Published 2015 Oct 20. doi: 10.1128/mBio.01578-15

28. Jo JH, Deming C, Kennedy EA, et al. Diverse Human Skin Fungal Communities in Children Converge in Adulthood. J Invest Dermatol. 2016;136(12):2356-2363. doi: 10.1016/j.jid.2016.05.130

29. Mukherjee S, Mitra R, Maitra A, et al. Sebum and Hydration Levels in Specific Regions of Human Face Significantly Predict the Nature and Diversity of Facial Skin Microbiome. Sci Rep. 2016;6:36062. Published 2016 Oct 27. doi: 10.1038/srep36062

30. Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, Aagaard KM. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 2017;23(3):314-326. doi: 10.1038/nm.4272

31. Shi B, Bangayan NJ, Curd E, et al. The skin microbiome is different in pediatric versus adult atopic dermatitis. J Allergy Clin Immunol. 2016;138(4):1233-1236. doi: 10.1016/j.jaci.2016.04.053

32. Oh J, Freeman AF; NISC Comparative Sequencing Program, et al. The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome Res. 2013;23(12):2103-2114. doi: 10.1101/gr.159467.113

33. Lee YB, Byun EJ, Kim HS. Potential Role of the Microbiome in Acne: A Comprehensive Review. J Clin Med. 2019;8(7):987. Published 2019 Jul 7. doi: 10.3390/jcm8070987

34. Nakamura K, O'Neill AM, Williams MR, et al. Short chain fatty acids produced by Cutibacterium acnes inhibit biofilm formation by Staphylococcus epidermidis. Sci Rep. 2020;10(1):21237. Published 2020 Dec 4. doi: 10.1038/s41598-020-77790-9

35. Kelhala HL, Aho VTE, Fyhrquist N, et al. Isotretinoin and lymecycline treatments modify the skin microbiota in acne. Exp Dermatol. 2018;27(1):30-36. doi: 10.1111/exd.13397

36. Agak GW, Qin M, Nobe J, et al. Propionibacterium acnes Induces an IL-17 Response in Acne Vulgaris that Is Regulated by Vitamin A and Vitamin D. J Invest Dermatol. 2014;134(2):366-373. doi: 10.1038/jid.2013.334

37. Yu Y, Champer J, Agak GW, Kao S, Modlin RL, Kim J. Different Propionibacterium acnes Phylotypes Induce Distinct Immune Responses and Express Unique Surface and Secreted Proteomes. J Invest Dermatol. 2016;136(11):2221-2228. doi: 10.1016/j.jid.2016.06.615

38. McCoy WH 4th, Otchere E, Rosa BA, Martin J, Mann CM, Mitreva M. Skin Ecology during Sebaceous Drought-How Skin Microbes Respond to Isotretinoin. J Invest Dermatol. 2019;139(3):732-735. doi: 10.1016/j.jid.2018.09.023

39. Lumsden KR, Nelson AM, Dispenza MC, et al. Isotretinoin increases skin-surface levels of neutrophil gelatinase-associated lipocalin in patients treated for severe acne. Br J Dermatol. 2011;165(2):302-310. doi: 10.1111/j.1365-2133.2011.10362.x

40. Bni R, Nehrhoff B. Treatment of gram-negative folliculitis in patients with acne. Am J Clin Dermatol. 2003;4(4):273-276. doi: 10.2165/00128071-200304040-00005

41. Belkaid Y, Tamoutounour S. The influence of skin microorganisms on cutaneous immunity. Nat Rev Immunol. 2016;16(6):353-366. doi: 10.1038/nri.2016.48

42. Swamy M, Jamora C, Havran W, Hayday A. Epithelial decision makers: in search of the ‘epimmunome'. Nat Immunol. 2010;11(8):656-665. doi: 10.1038/ni.1905

43. Deng Z, Chen M, Xie H, et al. Claudin reduction may relate to an impaired skin barrier in rosacea. J Dermatol. 2019;46(4):314-321. doi: 10.1111/1346-8138.14792

44. Muizzuddin N, Maher W, Sullivan M, Schnittger S, Mammone T. Physiological effect of a probiotic on skin. J Cosmet Sci. 2012;63(6):385-395.

45. Gueniche A, Benyacoub J, Philippe D, et al. Lactobacillus para-casei CNCM I-2116 (ST11) inhibits substance P-induced skin inflammation and accelerates skin barrier function recovery in vitro. Eur J Dermatol. 2010;20(6):731-737. doi: 10.1684/ejd.2010.1108

46. Breton A, Novikov A, Martin R, Tissieres P, Caroff M. Structural and biological characteristics of different forms of V. filiformis lipid A: use of MS to highlight structural discrepancies. J Lipid Res. 2017;58(3):543-552. doi: 10.1194/jlr.M072900

47. Kober MM, Bowe WP. The effect of probiotics on immune regulation, acne, and photoaging. Int J Womens Dermatol. 2015;1(2):85-89. Published 2015 Apr 6. doi: 10.1016/j.ijwd.2015.02.001

48. Wang Y, Kuo S, Shu M, et al. Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Appl Microbiol Biotechnol. 2014;98(1):411-424. doi: 10.1007/s00253-013-5394-8

49. Oh S, Kim SH, Ko Y, et al. Effect of bacteriocin produced by Lactococcus sp. HY 449 on skin-inflammatory bacteria. Food Chem Toxicol. 2006;44(8):1184-1190. doi: 10.1016/j.fct.2005.08.008

50. Kang BS, Seo JG, Lee GS, et al. Antimicrobial activity of enterocins from Enterococcus faecalis SL-5 against Propionibacterium acnes, the causative agent in acne vulgaris, and its therapeutic effect. J Microbiol. 2009;47(1):101-109. doi: 10.1007/s12275-008-0179-y

51. Kim J, Ko Y, Park YK, Kim NI, Ha WK, Cho Y. Dietary effect of lactoferrin-enriched fermented milk on skin surface lipid and clinical improvement of acne vulgaris. Nutrition. 2010;26(9):902-909. doi: 10.1016/j.nut.2010.05.011

52. Bowe WP, Logan AC. Acne vulgaris, probiotics and the gut-brainskin axis — back to the future? Gut Pathog. 2011;3(1):1. Published 2011 Jan 31. doi: 10.1186/1757-4749-3-1

53. Gueniche A, Philippe D, Bastien P, et al. Randomised doubleblind placebo-controlled study of the effect of Lactobacillus paracasei NCC 2461 on skin reactivity. Benef Microbes. 2014;5(2):137-145. doi: 10.3920/BM2013.0001

54. Krutmann J. Pre- and probiotics for human skin. Clin Plast Surg. 2012;39(1):59-64. doi: 10.1016/j.cps.2011.09.009

55. Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ. The microbial pharmacists within us: A metagenomic view of xenobiotic metabolism. Nat Rev Microbiol. 2016;14(5):273-287. doi: 10.1038/nrmicro.2016.17

56. Guthrie L, Gupta S, Daily J, et al. Human microbiome signatures of differential colorectal cancer drug metabolism. npj Biofilms Microbiomes. 2017;3:27. doi: https://doi.org/10.1038/s41522-017-0034-1


Рецензия

Для цитирования:


Круглова Л.С., Грязева Н.В., Тамразова А.В. Состав микробиоты кожи у детей и его влияние на патогенез акне. Вопросы современной педиатрии. 2021;20(5):430-434. https://doi.org/10.15690/vsp.v20i5.2319

For citation:


Kruglova L.S., Gryazeva N.V., Tamrazova A.V. Skin Microbiota Content in Children and its Effect on Acne Pathogenesis. Current Pediatrics. 2021;20(5):430-434. (In Russ.) https://doi.org/10.15690/vsp.v20i5.2319

Просмотров: 165


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)