Preview

Current Pediatrics

Advanced search

Mechanisms of Development and Variants of Therapeutic Management of Steroid Resistance in Patients with Atopic Dermatitis

https://doi.org/10.15690/vsp.v20i5.2309

Abstract

Skin is the natural habitat for complex bacterial, fungal, and viral communities (ecosystems). The microbiome of such communities is always in close relationship with the host genome, and the development of these ecosystems happens under the effects of morpho-physiological and immunological characteristics of the skin (sebaceous glands concentration, humidity, and temperature) and environmental factors. Metagenomic studies have shown significant diversity in skin ecosystems. Moreover, the role of commensal microorganisms in skin immune response modulating to various agents and, thus, its correlation with skin diseases pathogenesis is no longer in doubt. New probiotic and antimicrobial agents for external treatment have been developed according to these knowledges.

About the Authors

Nikolay N. Murashkin
National Medical Research Center of Children's Health; Sechenov First Moscow State Medical University (Sechenov University); Central State Medical Academy
Russian Federation

Moscow.


Disclosure of interest:

Nikolay N. Murashkin — receiving research grants from pharmaceutical companies Janssen, Eli Lilly, Novartis. Scientific consultant of Galderma, Pierre Fabre, Bayer, Leopharma, Pfizer, AbbVie, Amryt Pharma, Celgene, Molnlycke Health Care AB, Zeldis Pharma.



Roman V. Epishev
National Medical Research Center of Children's Health
Russian Federation

Moscow.


Disclosure of interest:

Roman V. Epishev — receiving research grants from pharmaceutical companies Eli Lilly, Novartis, AbbVie, Amryt Pharma, Janssen, Pfizer, Celgene. Scientific consultants of Molnlycke Health Care AB.



Alexander I. Materikin
National Medical Research Center of Children's Health
Russian Federation

Moscow.


Disclosure of interest:

Alexander I. Materikin — receiving research grants from pharmaceutical companies Eli Lilly, Novartis, AbbVie, Amryt Pharma, Janssen, Pfizer, Celgene. Scientific consultants of Molnlycke Health Care AB.



Eduard T. Ambarchyan
Research Institute of Pediatrics and Children's Health in “Central Clinical Hospital of the Russian Academy of Sciences”
Russian Federation

Moscow.


Disclosure of interest:

Eduard T. Ambarchyan — receiving research grants from pharmaceutical companies Eli Lilly, Novartis, AbbVie, Amryt Pharma, Janssen, Pfizer, Celgene. Scientific consultants of Molnlycke Health Care AB.



Leonid A. Opryatin
National Medical Research Center of Children's Health
Russian Federation

Moscow.


Disclosure of interest:

Leonid A. Opryatin — scientific consultant of Eli Lilly, Janssen.



Roman A. Ivanov
National Medical Research Center of Children's Health
Russian Federation

Moscow.


Disclosure of interest:

Roman A. Ivanov confirmed the absence of a reportable conflict of interests.



References

1. Grice EA, Kong HH, Renaud G, Young AC, Bouffard GG, Blakesley RW, et al. A diversity profile of the human skin microbiota. Genome Res. 2008;18:1043-1050

2. Chen YE, Tsao H. The skin microbiome: Current perspectives and future challenges. J Am Acad Dermatol. 2013;69(1):143-155.

3. Till AE, Goulden V, Cunliffe WJ, Holland KT. The cutaneous microflora of adolescent, persistent and late-onset acne patients does not differ. Br J Dermatol. 2000;142:885-892.

4. Paulino LC, Tseng CH, Strober BE, Blaser MJ. Molecular analysis of fungal microbiota in samples from healthy human skin and psoriatic lesions. J Clin Microbiol. 2006;44:2933-2941.

5. Roth RR, James WD. Microbial ecology of the skin. Annu Rev Microbiol. 1988;42:441-464.

6. Kong HH, Segre JA. Skin microbiome: Looking back to move forward. J Invest Dermatol. 2012;132:933-939.

7. Ursell LK, Clemente JC, Rideout JR, Gevers D, Caporaso JG, Knight R. The interpersonal and intrapersonal diversity of human-associated microbiota in key body sites. J Allergy Clin Immunol. 2012;129:1204-1208.

8. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9:244-253.

9. Weidinger S, Novak N. Atopic dermatitis. Lancet. 2016;387:1109-1122.

10. Von Mutius E. The environmental predictors of allergic disease. J Allergy Clin Immunol. 2000;105:9-19.

11. Cramer C, Link E, Horster M, Koletzko S, Bauer CP, Berdel D, et al. Elder siblings enhance the effect of filaggrin mutations on childhood eczema: Results from the 2 birth cohort studies LISAplus and GINIplus. J Allergy Clin Immunol. 2010;125:1254e5-1260e5.

12. Barker JN, Palmer CN, Zhao Y, Liao H, Hull PR, Lee SP, et al. Null mutations in the filaggrin gene (FLG) determine major susceptibility to early-onset atopic dermatitis that persists into adulthood. J Invest Dermatol. 2007;127:564-567.

13. Weidinger S, Illig T, Baurecht H, Irvine AD, Rodriguez E, Diaz-Lacava A, et al. Loss-of-function variations within the filaggrin gene predispose for atopic dermatitis with allergic sensitizations. J Allergy Clin Immunol. 2006;118:214-219.

14. Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, et al. Common loss-offunction variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38:441-446.

15. Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22:850-859.

16. Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature. 2010;465:346-349.

17. Stecher B, Chaffron S, Kappeli R, Hapfelmeier S, Freedrich S, Weber TC, et al. Like will to like: Abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog. 2010;6:e1000711.

18. Jung Eun Kim, Hei Sung Kim. Microbiome of the Skin and Gut in Atopic Dermatitis (AD): Understanding the Pathophysiology and Finding Novel Management Strategies. Journal of Clinical Medicine. 2019;8(4):444. doi: 10.3390/jcm8040444

19. Williams MR, Costa SK, Zaramela LS, Khalil S, Todd DA, Winter HL, Gallo RL, et al. Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis. Science Translational Medicine, 2019;11(490). doi: 10.1126/scitranslmed.aat8329

20. Tanaka A, Amagai Y, Oida K, Matsuda H. Recent findings in mouse models for human atopic dermatitis. Exp Anim. 2012;61:77-84.

21. Matsuda H, Watanabe N, Geba GP, Sperl J, Tsudzuki M, Hiroi J, et al. Development of atopic dermatitis-like skin lesion with IgE hyperproduction in NC/Nga mice. Int Immunol. 1997;9:461-466.

22. Leung DY. Infection in atopic dermatitis. Curr Opin Pediatr. 2003;15:399-404.

23. Patrushev AV, Samtsov AV, Nikitin VY, Ivanov AM, Gumilevskaya OP, Sukharev AV, Sukhina IA. Origin, function and role in the development of skin diseases CLA+T-lymphocytes. Vestnik Dermatologii i Venerologii. 2018;94(3):20-29. (In Russ.) doi: https://doi.org/10.25208/0042-4609-2018-94-3-20-29

24. Clark RA, Chong B, Mirchandani N. The vast majority of CLA+ T cells are resident in normal skin. J Immunology. 2006;176:4431-4439.

25. Breuer K, Wittmann M, Bosche B, Kapp A, Werfel T. Severe atopic dermatitis is associated with sensitization to staphylococcal enterotoxin B (SEB). Allergy. 2000;55:551-555.

26. Leyden JJ, Kligman AM. The case for steroid-antibiotic combinations. Br J Dermatol. 1977;96:179-187.

27. Ramsay CA, Savoie JM, Gilbert M, Gidon M, Kidson P. The treatment of atopic dermatitis with topical fusidic acid and hydrocortisone cream. J Eur Acad Dermatol Venereol. 1996;7(Suppl 1):S15-S22.

28. Hauk PJ, Hamid QA, Chrousos GP, Leung DYM. Induction of corticosteroid insensitivity in human peripheral blood mononuclear cells by microbial superantigens. J Allergy Clin Immunol. 2000;105:782-787.

29. Li L, Goleva E, Leung DYM. Superantigen-induced corticosteroid resistance of human T cells occurs through activation of the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK-ERK) pathway. J Allergy Clin Immunol. 2004;114:1059-1069.

30. Lyanova AA, Vladimirova LYu, Frantsiyants EM, Kutilin DS, Engibaryan MA. Molecular basis of modern targeted therapy for squamous cell carcinoma of the tongue and oral mucosa with monoclonal antibodies. Malignant Tumours. 2017;7(4):77-87. (In Russ.) doi: https://doi.org/10.18027/2224-5057-2017-7-4-77-87

31. Cho SH, Strickland I, Boguniewicz M, Leung DY. Fibronectin and fibrinogen contribute to the enhanced binding of Staphylococcus aureus to atopic skin. J Allergy Clin Immunol. 2001;108:269-274.

32. Cho SH, Strickland I, Tomkinson A, Fehringer AP, Gelfand EW, Leung DY. Preferential binding of Staphylococcus aureus to skin sites of Th2-mediated inflammation in a murine model. J Invest Dermatol. 2001;116:658-663.

33. Gallo RL, Murakami M, Ohtake T, Zaiou M. Biology and clinical relevance of naturally occurring antimicrobial peptides. J Allergy Clin Immunol. 2002;110:823-831.

34. Niyonsaba F, Nagaoka I, Ogawa H, Okumura K. Multifunctional antimicrobial proteins and peptides: Natural activators of immune systems. Curr Pharm Des. 2009;15:2393-2413.

35. Niyonsaba F, Kiatsurayanon C, Chieosilapatham P, Ogawa H. Friends or Foes? Host defense (antimicrobial) peptides and proteins in human skin diseases. Exp Dermatol. 2017;26:989-998.

36. Akiyama T, Niyonsaba F, Kiatsurayanon C, Nguyen TT, Ushio H, Fujimura T, Ueno T, Okumura K, Ogawa H, Ikeda S. The human cathelicidin LL-37 host defense peptide upregulates tight junction-related proteins and increases human epidermal keratinocyte barrier function. J Innate Immun. 2014;6:739-753.

37. Goto H, Hongo M, Ohshima H, Kurasawa M, Hirakawa S, Kitajima Y. Human beta defensin-1 regulates the development of tight junctions in cultured human epidermal keratinocytes. J Dermatol Sci. 2013;71:145-148.

38. Kiatsurayanon C, Niyonsaba F, Smithrithee R, Akiyama T, Ushio H, Hara M, Okumura K, Ikeda S, Ogawa H. Host defense (antimicrobial) peptide, human -defensin-3, improves the function of the epithelial tight-junction barrier in human keratinocytes. J Invest Dermatol. 2014;134:2163-2173.

39. Hattori F, Kiatsurayanon C, Okumura K, Ogawa H, Ikeda S, Okamoto K, Niyonsaba F. The antimicrobial protein S100A7/ psoriasin enhances the expression of keratinocyte differentiation markers and strengthens the skin's tight junction barrier. Cutan Biol. 2014;171:742-753.

40. Ong-Peck Y, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 2002;347:1151-1160.

41. Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF, et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol. 2003;171:3262-3269.

42. Harder J, Bartels J, Christophers E, Schroder JM. Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem. 2001;276:5707-5713.

43. Leung DY, Soter NA. Cellular and immunologic mechanisms in atopic dermatitis. J Am Acad Dermatol. 2001;44(Suppl 1):S1-S12.

44. Barr TP, Garzia Ch, Guha S, Fletcher EK, Nguyen N, Wieschhaus AJ, Ferrer L, Covic L, Kuliopulos A. PAR2 Pepducin-Based Suppression of Inflammation and Itch in Atopic Dermatitis Models. The Journal of Investigative Dermatology. 2019;139(2): 412-421.

45. Aries MF, et al. Anti-inflammatory and immunomodulatory effects of Aquaphilus dolomiae extract on in vitro models. Clin Cosmet Investig Dermatol. 2016;9:421-434. eCollection 2016.

46. Bade I, et al. Sensory analysis of 4 medical spa spring waters conlaining various mineral concentrations. Int J Dermatol. 1999;38:784-786.

47. Boisnic S, et al. Inghibilory effect of Ave'ne spring water on vasoadive inteslinal peptide-induced inflammation in surviving human skin. Int J Tissue Read. 2001;23:89-95.

48. Wollenberg A, et al. Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: part I. J Eur Acad Dermatol Venereol. 2018;32(5):657-682.

49. Nguyen T, Castex-Rizzi N, Redoules D. Immunomodulatory, antiinflammatory, anti-pruritus and tolerogenic activities induced by I-modulia, an Aquaphilus dolomiae culture extract, in atopic dermatitis pharmacology models. Ann Dermatol Venereol. 2017;144(Suppl 1):S42-S49.

50. Fostini AC, Georgescu V, Decoster CJ, et al. A cream based on Aquaphilus dolomiae extracts alleviates non-histaminergic pruritus in humans. Eur J Dermatol. 20171;27(3):317-318.

51. Nguyen T, Castex-Rizzi N, Redoul s D. Activits immunomodula-trice, anti-inflammatoire, antiprurigineuse et tol rog nique induites par I-modulia®, un extrait issu de culture d'Aquaphilus dolomi-ae, dans les mod les pharmacologiques de dermatite atopique: Immunomodulatory, anti-inflammatory, anti-pruritus and tolerogenic activities induced by I-modulia®, an Aquaphilus dolomiae culture extract, in atopic dermatitis pharmacology models. Ann Dermatol Venereol. 2017;144(Suppl 1):S42-S49.

52. Martin H, et al. Aquaphilus dolomiae extract counteracts the effects of cutaneous S. aureus secretome isolated from atopic children on CD4+ T cell activation. Pharm Biol. 2016;54(11):2782-2785. Epub 2016 May 14.

53. Laborel-Pr neron E, et al. Effects of the Staphylococcus aureus and Staphylococcus epidermidis Secretomes Isolated from the Skin Microbiota of Atopic Children on CD4+ T Cell Activation. PLoS One. 2015;10(11):e0144323.

54. Nocera T, Fabre P, Rossi AB, Mengeaud V. Clinical development program of a new dermocosmetic range of products containing I-modulia (Aquaphilus dolomiae extract) in atopic dermatitis. J Am Acad Dermatol. 2014;70(5Suppl 1):AB62. doi: https://doi.org/10.1016/j.jaad.2014.01.257

55. Bianchi P, et al. Effects of a New Emollient-Based Treatment on Skin Microflora Balance and Barrier Function in Children with Mild Atopic Dermatitis. Pediatr Dermatol. 2016;33(2):165-171.


Review

For citations:


Murashkin N.N., Epishev R.V., Materikin A.I., Ambarchyan E.T., Opryatin L.A., Ivanov R.A. Mechanisms of Development and Variants of Therapeutic Management of Steroid Resistance in Patients with Atopic Dermatitis. Current Pediatrics. 2021;20(5):370-375. (In Russ.) https://doi.org/10.15690/vsp.v20i5.2309

Views: 532


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)