Preview

Current Pediatrics

Advanced search

Selective Dorsal Rhizotomy in Treatment of Spasticity in Patients with Cerebral Palsy

https://doi.org/10.15690/vsp.v21i1.2382

Abstract

Selective dorsal rhizotomy (SDR) is effective and safe neurosurgical method for the treatment of patients with spastic forms of cerebral palsy (CP). The aim of the review is to introduce the opportunities of SDR in CP patients, to present indications, contraindications, and current inclusion criteria for the surgery for the broad audience of specialists. Authors have given recommendations on SDR implementation in complex rehabilitation of CP patients and have defined its effective combination with other methods of spasticity treatment according to the international experience of SDR, and its short-term and long-term results. The particular attention was paid to the application of SDR in cases of secondary orthopaedic deformities due to CP. The understanding of opportunities and limitations of SDR will allow us to give the patients relevant help and use the advantages of this method.

About the Authors

Olga A. Klochkova
Research Institute of Pediatrics and Children’s Health in “Central Clinical Hospital of the Russian Academy of Sciences”; Tender Loving Care LLC, Rehabilitation Center “Aprel”
Russian Federation

Moscow


Disclosure of interest:

Not declared



Ekaterina P. Kolesnikova
Tender Loving Care LLC, Rehabilitation Center “Aprel”
Russian Federation

Moscow


Disclosure of interest:

Not declared



Dmitriy Yu. Zinenko
Veltischev Research and Clinical Institute for Pediatrics of Pirogov Russian National Research Medical University
Russian Federation

Moscow


Disclosure of interest:

Not declared



Evgeniya M. Berdichevskaya
Veltischev Research and Clinical Institute for Pediatrics of Pirogov Russian National Research Medical University
Russian Federation

Moscow


Disclosure of interest:

Not declared



References

1. Bax M. Goldstein M, Rosenbaum P, et al. Proposed definition and classification of cerebral palsy, April 2005. Dev Med Child Neurol. 2005;47(8):571–576. doi: https://doi.org/10.1017/s001216220500112x

2. Rosenbaum P, Paneth N, Leviton A, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:8–14.

3. Badalyan LO, Zurba LT, Timonina OV. Cerebral palsy. Kiev; 1988. 328 р. (In Russ.)

4. Klochkova OA, Kurenkov AL. Botulinum toxin therapy in cerebral palsy. Moscow; 2020. 248 р. (In Russ.)

5. Kurenkov AL, Batysheva TT, Vinogradov AV, et al. Spastichnost’ pri detskom cerebralnom paraliche: diagnostica i strategii lechenija. Zh Nevrol Psikhiatr Im S S Korsakova. 2012;112(7–2):24–28. (In Russ.)

6. Graham HK. Botulinum toxin A in cerebral palsy: Functional outcomes. J Pediatr. 2000;137(3):300–303. doi: https://doi.org/10.1067/mpd.2000.109107

7. Lance JW. Symposium synopsis. In: Feldman RG, Young RR, Koella WP (eds). Spasticity: Disordered Motor Control; 1980. P. 485–494.

8. Ganguly J, Kulshreshtha D, Almotiri M, et al. Muscle Tone Physiology and Abnormalities. Toxins (Basel). 2021;13(4):282. doi: https://doi.org/10.3390/toxins13040282

9. Novak I, Morgan C, Fahey M, et al. State of the Evidence Traffic Lights 2019: Systematic Review of Interventions for Preventing and Treating Children with Cerebral Palsy. Curr Neurol Neurosci Rep. 2020;20(2):3. doi: https://doi.org/10.1007/s11910-020-1022-z

10. Heinen F, Desloovere K, Schroeder AS, et al. The updated European Consensus 2009 on the use of Botulinum toxin for children with cerebral palsy. Eur J Paediatr Neurol. 2010;14(1): 45–66. doi: https://doi.org/10.1016/j.ejpn.2009.09.005

11. Graham D, Aquilina K, Mankad K, et al. Selective dorsal rhizotomy: Current state of practice and the role of imaging. Quant Imaging Med Surg. 2018;8(2):209–218. doi: https://doi.org/10.21037/qims.2018.01.08

12. Umnov VV. Nejrohirurgicheskie aspekty kompleksnogo ortopedo-nejrohirurgicheskogo lecheniya spasticheskih paralichej u detej. Vestnik Rossijskoj Voennomedicinskoj akademii. 2008;21(1):87–91. (In Russ.)

13. Korolev AA. Vozmozhnye metody nejrohirurgicheskoj korrekcii myshechnoj spastichnosti. Sovremennye naukoemkie tekhnologii. 2012;(1):26–27. (In Russ.)

14. Komfort AV, Semenova ZhB, Ponina IV. Selektivnaya dorsal’naya rizotomiya v korrekcii spasticheskogo sindroma u bol’nyh detskim cerebral’nym paralichom. Rossijskij vestnik detskoj hirurgii, anesteziologii i reanimatologii. 2014;4(4):130–135. (In Russ.)

15. Kenis VM, Ivanov SV, Kiseleva TI. Selective dorsal rhizotomy opportunities with foot deformitiesin children with cerebral palsy. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2015;3(1):22–26. (In Russ.) doi: https://doi.org/10.17816/PTORS3122-26

16. Hadzhiev OCh, Sirotyuk MV. Neodnoznachnost’ rezul’tatov selektivnoj dorzal’noj rizotomii pri detskom cerebral’nom paraliche i elektromiograficheskaya ob’’ektivnost’. Vestnik fizioterapii i kurortologii. 2015;23(3):16–22. (In Russ.)

17. Akizhanova IV, Kozhanova AM, Karieva EK, et al. Analysis of the effectiveness of selective dorsal rhizotomy in combination with postoperative rehabilitation in patients with spastic CP from the standpoint of ICF. Bulletin of the Kazakh National Medical University. 2021;(1):115–122. (In Russ.) doi: https://doi.org/10.53065/kaznmu.2021.60.54.027

18. Park TS, Dobbs MB, Cho J. Evidence Supporting Selective Dorsal Rhizotomy for Treatment of Spastic Cerebral Palsy. Cureus. 2018;10(10):e3466. doi: https://doi.org/10.7759/cureus.3466

19. Nicolini-Panisson RD, Tedesco AP, Folle MR, et al. Selective dorsal rhizotomy in cerebral palsy: selection criteria and postoperative physical protocols. Rev Paul Pediatr. 2018;36(1):9. doi: https://doi.org/10.1590/1984-0462/;2018;36;1;00005

20. Grunt S, Fieggen AG, Vermeulen RJ, et al. Selection criteria for selective dorsal rhizotomy in children with spastic cerebral palsy: A systematic review of the literature. Dev Med Child Neurol. 2014;56(4):302–312. doi: https://doi.org/10.1111/dmcn.12277

21. Foerster O. Über eine neue operative Methode der Behandlung spastischer Lähmungen mittels Resektion hinterer Rückenmarkswurzeln. Z Orthop Chir. 1908;22:203–223.

22. Gros C, Ouaknine G, Vlahovitch B, et al. La radicotomie sélective postérieure dans le traitement neuro-chirurgical de l’hypertonie pyramidale [Selective posterior radicotomy in the neurosurgical treatment of pyramidal hypertension]. Neurochirurgie. 1967;13(4):505–518.

23. Fasano VA, Broggi G, Barolat-Romana G, et al. Surgical treatment of spasticity in cerebral palsy. Childs Brain. 1978;4(5):289–305. doi: https://doi.org/10.1159/000119785

24. Peacock WJ, Arens LJ. Selective posterior rhizotomy for the relief of spasticity in cerebral palsy. S Afr Med J. 1982;62(4):119–124.

25. Hesselgard K, Reinstrup P, Stromblad LG, et al. Selective dorsal rhizotomy and postoperative pain management. A worldwide survey. Pediatr Neurosurg. 2007;43:107–112. doi: https://doi.org/10.1159/000098382

26. Park TS, Johnston JM. Surgical techniques of selective dorsal rhizotomy for spastic cerebral palsy. Technical note. Neurosurg Focus. 2006;21(2):e7.

27. Park TS, Liu JL, Edwards C, et al. Functional Outcomes of Childhood Selective Dorsal Rhizotomy 20 to 28 Years Later. Cureus. 2017;9(5):e1256. doi: https://doi.org/10.7759/cureus.1256

28. Wang KK, Munger ME, Chen BP, et al. Selective dorsal rhizotomy in ambulant children with cerebral palsy. J Child Orthop. 2018;12(5): 413–427. doi: https://doi.org/10.1302/1863-2548.12.180123

29. Peacock WJ, Staudt LA. Functional outcomes following selective posterior rhizotomy in children with cerebral palsy. J Neurosurg. 1991;74(3):380–385. doi: https://doi.org/10.3171/jns.1991.74.3.0380

30. Park TS, Joh S, Walter DM, et al. Selective Dorsal Rhizotomy for the Treatment of Spastic Hemiplegic Cerebral Palsy. Cureus. 2020;12(8):e9605. doi: https://doi.org/10.7759/cureus.9605

31. Park TS, Joh S, Walter DM, et al. Selective Dorsal Rhizotomy for Treatment of Hereditary Spastic Paraplegia-Associated Spasticity in 37 Patients. Cureus. 2021;13(9):e17690. doi: https://doi.org/10.7759/cureus.17690

32. Peacock WJ, Arens LJ, Berman B. Cerebral palsy spasticity: Selective posterior rhizotomy. Pediatr Neurosci. 1987;13(2):61–66. doi: https://doi.org/10.1159/000120302

33. Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2): 206–207. doi: https://doi.org/10.1093/ptj/67.2.206

34. Morris SL, Williams G. A historical review of the evolution of the Tardieu Scale. Brain Inj. 2018;32(5):665–669. doi: https://doi.org/10.1080/02699052.2018.1432890

35. Medical Research Council. Aids to the examination of the peripheral nervous system, Memorandum No. 45, 1976. Available from: https://www.ukri.org/councils/mrc/facilities-and-resources/find-an-mrc-facility-or-resource/mrc-muscle-scale/

36. Schwartz MH, Rozumalski A, Steele KM. Dynamic motor control is associated with treatment outcomes for children with cerebral palsy. Dev Med Child Neurol. 2016;58(11):1139–1145. doi: https://doi.org/10.1111/dmcn.13126

37. Roberts A, Stewart C, Freeman R. Gait analysis to guide a selective dorsal rhizotomy program. Gait Posture. 2015;42(1): 16–22. doi: https://doi.org/10.1016/j.gaitpost.2015.04.004

38. van de Pol LA, Vermeulen RJ, van’t Westende C, et al. Risk Factors for Dystonia after Selective Dorsal Rhizotomy in Nonwal king Children and Adolescents with Bilateral Spasticity. Neuropediatrics. 2018;49(1):44–50. doi: https://doi.org/10.1055/s-0037-1607395

39. Jethwa A, Mink J, Macarthur C, et al. Development of the Hypertonia Assessment Tool (HAT): A discriminative tool for hypertonia in children. Dev Med Child Neurol. 2010;52(5):e83–e87. doi: https://doi.org/10.1111/j.1469-8749.2009.03483.x

40. Bax M, Tydeman C, Flodmark O. Clinical and MRI correlates of cerebral palsy: the European Cerebral Palsy Study. JAMA. 2006;296(13):1602–1608. doi: https://doi.org/10.1001/jama.296.13.1602

41. Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009;8(1):110–124. doi: https://doi.org/10.1016/S1474-4422(08)70294-1

42. Tedroff K, Hägglund G, Miller F. Long-term effects of selective dorsal rhizotomy in children with cerebral palsy: a systematic review. Dev Med Child Neurol. 2020;62(5):554–562. doi: https://doi.org/10.1111/dmcn.14320

43. Ailon T, Beauchamp R, Miller S, et al. Long-term outcome after selective dorsal rhizotomy in children with spastic cerebral palsy. Childs Nerv Syst. 2015;31(3):415–423. doi: https://doi.org/10.1007/s00381-015-2614-9

44. Bolster EA, van Schie PE, Becher JG, et al. Long-term effect of selective dorsal rhizotomy on gross motor function in ambulant children with spastic bilateral cerebral palsy, compared with reference centiles. Dev Med Child Neurol. 2013;55(7):610–616. doi: https://doi.org/10.1111/dmcn.12148

45. Dudley RW, Parolin M, Gagnon B, et al. Long-term functional benefits of selective dorsal rhizotomy for spastic cerebral palsy. J Neurosurg Pediatr. 2013;12(2):142–150. doi: https://doi.org/10.3171/2013.4.PEDS12539

46. Josenby AL, Wagner P, Jarnlo GB, et al. Motor function after selective dorsal rhizotomy: A 10-year practice-based followup study. Dev Med Child Neurol. 2012;54(5):429–435. doi: https://doi.org/10.1111/j.1469-8749.2012.04258.x

47. Tedroff K, Lowing K, Jacobson DN, et al. Does loss of spasticity matter? A 10-year follow-up after selective dorsal rhizotomy in cerebral palsy. Dev Med Child Neurol. 2011;53(8):724–729. doi: https://doi.org/10.1111/j.1469-8749.2011.03969.x

48. Tedroff K, Löwing K, Åström E. A prospective cohort study investigating gross motor function, pain, and health-related quality of life 17 years after selective dorsal rhizotomy in cerebral palsy. Dev Med Child Neurol. 2015;57(5):484–490. doi: https://doi.org/10.1111/dmcn.12665

49. Klochkova OA, Kurenkov AL. Muscular Weakness and Loss of Motor Skills in Patients with Cerebral Palsy. Current Pediatrics. 2020;19(2):107–115. (In Russ.) doi: https://doi.org/10.15690/vsp.v19i2.2103

50. Linden O, Hagglund G, Rodby-Bousquet E, et al. The development of spasticity with age in 4,162 children with cerebral palsy: A register-based prospective cohort study. Acta Orthop. 2019;90(3):286–291. doi: https://doi.org/10.1080/17453674.2019.1590769

51. Steinbok P, Reiner AM, Beauchamp R, et al. A randomized clinical trial to compare selective posterior rhizotomy plus physiotherapy with physiotherapy alone in children with spastic diplegic cerebral palsy. Dev Med Child Neurol. 1997;39(3):178–184. doi: https://doi.org/10.1111/j.1469-8749.1997.tb07407.x

52. Wright FV, Sheil EM, Drake JM, et al. Evaluation of selective dorsal rhizotomy for the reduction of spasticity in cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 1998;40(4): 239–247. doi: https://doi.org/10.1111/j.1469-8749.1998.tb15456.x

53. MacWilliams BA, Johnson BA, Shuckra AL, et al. Functional decline in children undergoing selective dorsal rhizotomy after age 10. Dev Med Child Neurol. 2011;53(8):717–723. doi: https://doi.org/10.1111/j.1469-8749.2011.04010.x

54. Steinbok P, McLeod K. Comparison of motor outcomes after selective dorsal rhizotomy with and without preoperative intensified physiotherapy in children with spastic diplegic cerebral palsy. Pediatr Neurosurg. 2002;36(3):142–147. doi: https://doi.org/10.1159/000048369

55. Klochkova OA, Kurenkov AL, Kenis VM. Development of contractures in spastic forms of cerebral palsy: Pathogenesis and prevention Pediatric Traumatology. Orthopaedics and Reconstructive Surgery. 2018;6(1):58–66. (In Russ.) doi: https://doi.org/10.17816/PTORS6158-66

56. Munger ME, Aldahondo N, Krach LE, et al. Long-term outcomes after selective dorsal rhizotomy: a retrospective matched cohort study. Dev Med Child Neurol. 2017;59(11):1196–1203. doi: https://doi.org/10.1111/dmcn.13500

57. Chicoine MR, Park TS, Kaufman BA. Selective dorsal rhizotomy and rates of orthopedic surgery in children with spastic cerebral palsy. J Neurosurg. 1997;86(1):34–39. doi: https://doi.org/10.3171/jns.1997.86.1.0034

58. O’Brien DF, Park TS, Puglisi JA, et al. Orthopedic surgery after selective dorsal rhizotomy for spastic diplegia in relation to ambulatory status and age. J Neurosurg. 2005;103(1Suppl):5–9. doi: https://doi.org/10.3171/ped.2005.103.1.0005

59. Hicdonmez T, Steinbok P, Beauchamp R, et al. Hip joint subluxation after selective dorsal rhizotomy for spastic cerebral palsy. J Neurosurg. 2005;103(1Suppl):10–16. doi: https://doi.org/10.3171/ped.2005.103.1.0010

60. Nordmark E, Josenby AL, Lagergren J, et al. Long-term outcomes five years after selective dorsal rhizotomy. BMC Pediatr. 2008;8:54. doi: https://doi.org/10.1186/1471-2431-8-54

61. Miller SD, Juricic M, Hesketh K, et al. Prevention of hip displacement in children with cerebral palsy: a systematic review. Dev Med Child Neurol. 2017;59(11):1130–1138. doi: https://doi.org/10.1111/dmcn.13480

62. Limpaphayom N, Stewart S, Wang L, et al. Functional outcomes after selective dorsal rhizotomy followed by minimally invasive tendon lengthening procedures in children with spastic cerebral palsy. J Pediatr Orthop B. 2020;29(1):1–8. doi: https://doi.org/10.1097/BPB.0000000000000642

63. Langerak NG, Vaughan CL, Hoffman EB, et al. Incidence of spinal abnormalities in patients with spastic diplegia 17 to 26 years after selective dorsal rhizotomy. Child Nerv Syst. 2009;25(12): 1593–1603. doi: https://doi.org/10.1007/s00381-009-0993-5

64. Buckon CE, Thomas SS, Piatt J, et al. Selective dorsal rhizotomy versus orthopedic surgery: a multidimensional assessment of outcome efficacy. Arch Phys Med Rehabil. 2004;85(3):457–465. doi: https://doi.org/10.1016/j.apmr.2003.05.009

65. Morota N. Functional posterior rhizotomy: the Tokyo experience. Childs Nerv Syst. 2007;23(9):1007–1014. doi: https://doi.org/10.1007/s00381-007-0381-y

66. Hurvitz EA, Marciniak CM, Daunter AK, et al. Functional outcomes of childhood dorsal rhizotomy in adults and adolescents with cerebral palsy. J Neurosurg Pediatr. 2013;11(4):380–388. doi: https://doi.org/10.3171/2013.1.PEDS12311


Review

For citations:


Klochkova O.A., Kolesnikova E.P., Zinenko D.Yu., Berdichevskaya E.M. Selective Dorsal Rhizotomy in Treatment of Spasticity in Patients with Cerebral Palsy. Current Pediatrics. 2022;21(1):19-28. (In Russ.) https://doi.org/10.15690/vsp.v21i1.2382

Views: 1076


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)