Preview

Current Pediatrics

Advanced search

Long-Term Development and Health of Children Conceived by Assisted Reproductive Technologies

https://doi.org/10.15690/pf.v19i2.2404

Abstract

The demographic situation in Russia requires escalation of measures to combat infertility including assisted reproductive technologies (ART). The analysis of correlations between ART and features of health and long-term development of “children from the tube” is presented. There is a high risk of dysontogeny after in vitro fertilization/intracytoplasmic sperm injection due to epigenetic disorders such as DNA methylation disorders. Living conditions, parenting, education, and health care are crucial for the healthy development of all children including those conceived by ART. The correlations between long-term cognitive development of “children from the tube” and the aspects of parenting in families are presented.

About the Authors

Irina А. Belyaeva
Research Institute of Pediatrics and Children’s Health in Clinical Research Centre № 2 of “Russian Research Center of Surgery named after academician B.V. Petrovsky”; Pirogov Russian National Research Medical University; Morozov Children’s City Hospital
Russian Federation

Moscow


Disclosure of interest:

Not specified.



Leyla S. Namazova-Baranova
Research Institute of Pediatrics and Children’s Health in Clinical Research Centre № 2 of “Russian Research Center of Surgery named after academician B.V. Petrovsky”; Pirogov Russian National Research Medical University
Russian Federation

Moscow


Disclosure of interest:

Not specified.



Alexander A. Baranov
Research Institute of Pediatrics and Children’s Health in Clinical Research Centre № 2 of “Russian Research Center of Surgery named after academician B.V. Petrovsky”
Russian Federation

Moscow


Disclosure of interest:

Not specified.



Kamilla Y. Efendieva
Research Institute of Pediatrics and Children’s Health in Clinical Research Centre № 2 of “Russian Research Center of Surgery named after academician B.V. Petrovsky”; Pirogov Russian National Research Medical University
Russian Federation

Moscow


Disclosure of interest:

Not specified.



George A. Karkashadze
Research Institute of Pediatrics and Children’s Health in Clinical Research Centre № 2 of “Russian Research Center of Surgery named after academician B.V. Petrovsky”
Russian Federation

Moscow


Disclosure of interest:

Not specified.



Elena S. Dedyukina
Tyumen State Medical University
Russian Federation

Tyumen 


Disclosure of interest:

Not specified.



Elena N. Serebryakova
Federal State Budgetary Educational Institution of Higher Education "South-Ural State Medical University" of the Ministry of Healthcare of the Russian Federation

Moscow


Disclosure of interest:

Not specified.



Tatiana A. Konstantinidi
Research Institute of Pediatrics and Children’s Health in Clinical Research Centre № 2 of “Russian Research Center of Surgery named after academician B.V. Petrovsky”
Russian Federation

Moscow


Disclosure of interest:

Not specified.



Alexey I. Molodchenkov
SIA «Technologies for systems analysis»; Peoples’ Friendship University of Russia
Russian Federation

Moscow


Disclosure of interest:

Not specified.



Tinatin Yu. Gogberashvili
Research Institute of Pediatrics and Children’s Health in Clinical Research Centre № 2 of “Russian Research Center of Surgery named after academician B.V. Petrovsky”
Russian Federation

Moscow


Disclosure of interest:

Not specified.



References

1. Nigmatulin RI. Pandemic and demographic crisis. Overcoming conditions. Representative power – 21st century: legislation, commentary problems. 2021;(7-8):1–12. (In Russ). doi: https://doi.org/10.54449/20739532_2021_7-8_1

2. Estestvennoe dvizhenie naseleniya v razreze sub’ektov Rossiiskoi Federatsii za noyabr’ 2021 goda. In: Federal State Statistics Service. December 30, 2021. (In Russ) Доступно по: https://rosstat.gov.ru/storage/mediabank/2021_edn11.htm. Ссылка активна на 21.04.2022.

3. Radzinskii VE. Dostizheniya i ogorcheniya reproduktivnoi meditsiny XXI veka: plenary report February 10, 2022. In: All-Russian conference marathon “Perinatal medicine: from pregravid preparation to healthy motherhood and childhood”. February 10–12, 2022.

4. Belloc S, Hazout A, Zini A, et al. How to overcome male infertility after 40: Influence of paternal age on fertility. Maturitas. 2014;78(1):22–29. doi: https://doi.org/10.1016/j.maturitas.2014.02.011

5. Mazur DJ, Lipshultz LI. Infertility in the Aging Male. Curr Urol Rep. 2018;19(7):54. doi: https://doi.org/10.1007/s11934-018-0802-3

6. Urhoj SK, Jespersen LN, Nissen M, et al. Advanced paternal age and mortality of offspring under 5 years of age: a register-based cohort study. Hum Reprod. 2014;29(2):343–350. doi: https://doi.org/10.1093/humrep/det399

7. Omolaoye TS, Adeniji AA, Cardona Maya WD, et al. SARS-CoV-2 (Covid-19) and male fertility: Where are we? Reprod Toxicol. 2021;99: 65–70. doi: https://doi.org/10.1016/j.reprotox.2020.11.012

8. Anifandis G, Tempest HG, Oliva R, et al. COVID-19 and human reproduction: A pandemic that packs a serious punch. Syst Biol Rep Med. 2021;67(1):3–23. doi: https://doi.org/10.1080/19396368.2020.1855271

9. National project “Demography” and the national project “Health”. In: National projects. (In Russ). Доступно по: https://xn--80aapampemcchfmo7a3c9ehj.xn--p1ai/projects. Ссылка активна на 21.05.2021.

10. Lokshin VN. Vspomogatel’nye reproduktivnye tekhnologii. Novye gorizonty. In: Abstracts XXIX Annual International RAHR conference “Reproductive technologies today and tomorrow”, 4–7 September 2019, Rostov-on-Don. pp. 17–18. (In Russ).

11. Order of the Ministry of Health of Russia dated February 26, 2003 № 67 “O primenenii vspomogatel’nykh reproduktivnykh tekhnologii (VRT) v terapii zhenskogo i muzhskogo besplodiya”. (In Russ). Доступно по: https://base.garant.ru/70318364. Ссылка активна на 23.04.2022.

12. AA, Namazova-Baranova LS, Belyaeva IA, et al. Medical and social problems of assisted reproductive technologies from the standpoint of pediatrics. Vestnik Rossiiskoi akademii meditsinskikh nauk = Annals of the Russian academy of medical sciences. 2015;70(3):307–314. (In Russ). doi: https://doi.org/10.15690/vramn.v70i3.1326

13. Sandin S, Nygren KG, Iliadou A. Autism and mental retardation among offspring born after in vitro fertilization. JAMA. 2013;310(1):75–84. doi: https://doi.org/10.1001/jama.2013.7222.

14. Berntsen S, Söderström-Anttila V, Wennerholm UB, et al. The health of children conceived by ART: ‘the chicken or the egg?’. Hum Reprod Update. 2019;25(2):137–158. doi: https://doi.org/10.1093/humupd/dmz001

15. Präg P, Mills M. Assisted reproductive technologies in Europe: usage and regulation in the contex of cross-border reproductive care In: Childlessness in Europe: Context, Cause, and Consequences. Kreyenfeld M, ed. Springer Open; 2015. pp. 289–312. doi: https://doi.org/10.1007/978-3-319-44667-7_14

16. Martin JA, Hamilton BE, Ventura SJ. Births: final data for 2000. Natl Vital Stat Rep. 2001;49(5):1–20.

17. Centers for Disease Control and Prevention. 2017 Assisted Reproductive Technology Fertility Clinic Success Rates Report. Atlanta, GA: US Department of Health and Human Services; 2019.

18. Luke B, Brown MB, Wantman E, et al. The risk of birth defects with conception by ART. Hum Reprod. 2021;36(1):116–129. doi: https://doi.org/10.1093/humrep/deaa272

19. Luke B, Brown MB, Spector LG. Validation of infertility treatment and assisted reproductive technology use on the birth certificate in eight states. Am J Obstet Gynecol. 2016;215(1):126–127. doi: https://doi.org/10.1016/j.ajog.2016.02.052

20. Salemi JL, Tanner JP, Sampat DP, et al. Evaluation of the sensiti vity and accuracy of birth defects indicators on the 2003 revision of the US birth certificate: has data quality improved? Paediatr Perinat Epidemiol. 2017;31(1):67–75. doi: https://doi.org/10.1111/ppe.12326

21. American Society for Reproductive Medicine. Available online: https://www.asrm.org. Accessed on May 07, 2021.

22. Calhaz-Jorge C, De Geyter C, Kupka MS, et al. Assisted reproductive technology in Europe, 2013: results generated from European registers by ESHRE. Hum Reprod. 2017;32(10):1957–1973. doi: https://doi.org/10.1093/humrep/dex264

23. National Register of ART. In: Russian Association of Human Reproduction. (In Russ).] Доступно по: http://rahr.ru/registr_otchet.php. Ссылка активна на 26.02.2022.

24. Kovtun OP, Plaxina A.N, Makutina VA, et al. Information-analytical assessment systems for perinatal outcomes and children’s health status born by assisted reproductive technologies. Rossiyskiy Vestnik Perinatologii i Pediatrii = Russian Bulletin of Perinatology and Pediatrics. 2020;65(1):45–50. (In Russ). doi: https://doi.org/10.21508/1027-4065-2020-65-1-45-50]

25. Korsak VS, Smirnova AA, Shurygina OV. Registr tsentrov VRT Rossii. Otchet za 2012 god. Russian Journal of Human Reproduction. 2014;5:13–21. (In Russ).

26. Korsak VS, Smirnova AA, Shurygina OV. ART Register of RAHR, 2019. Russian Journal of Human Reproduction. 2021;27(6):14–29. (In Russ). doi: https://doi.org/10.17116/repro20212706114

27. Order of the Ministry of Health of Russia dated July 31, 2020 № 803н “O poryadke ispol’zovaniya vspomogatel’nykh reproduktivnykh tekhnologii, protivopokazaniyakh i ogranicheniyakh k ikh primeneniyu”. (In Russ). Доступно по: https://www.garant.ru/products/ipo/prime/doc/74676088. Ссылка активна на 23.04.2022.

28. Isupova OG.Assisted reproductive technologies: new opportunities. Demographic Review. 2017;4(1):35–64. (In Russ).

29. Keshishian ES, Tsaregorodtsev AD, Ziborova MI. The health status of children born after in vitro fertilization. Rossiyskiy Vestnik Perinatologii i Pediatrii = Russian Bulletin of Perinatology and Pediatrics. 2014;59(5):15–25. (In Russ).

30. Plaxina AN, Kovtun OP, Nikolaeva EB. Assisted reproductive technologies: analysis of the results achieved and the search for new solutions (review of literature). Ural Medical Journal. 2017;5(149):20–26 (In Russ).

31. Tararbit K, Lelong N, Thieulin A-C, et al. The risk of four specific congenital heart defects associated with assisted reproductive techniques: a population-based evaluation. Hum Reprod. 2013;28(2):367–374. doi: https://doi.org/10.1093/humrep/des400

32. Wessel JA, Mol F, Danhof NA, et al. Birthweight and other perinatal outcomes of singletons conceived after assisted reproduction compared to natural conceived singletons in couples with unexplained subfertility: follow-up of two randomized clinical trials. Hum Reprod. 2021;36(3):817–825. doi: https://doi.org/10.1093/humrep/deaa298

33. Huang X, Fu J. Association Between Assisted Reproductive Technology and White Matter Injury in Premature Infants: A CaseControl Study. Front Pediatr. 2021;9:686670. doi: https://doi.org/10.3389/fped.2021.686670

34. Strömberg B, Dahlquist G, Ericson A, et al. Neurological sequelae in children born after in-vitro fertilisation: a population-based study. Lancet. 2002;359(9305):461–465. doi: https://doi.org/10.1016/S0140-6736(02)07674-2

35. Quitadamo P, Thapar N, Staiano A, Borrelli O. Gastrointestinal and nutritional problems in neurologically impaired children. Eur J Paediatr Neurol. 2016;20(6):810–815. doi: https://doi.org/10.1016/j.ejpn.2016.05.019

36. Sadowska M, Sarecka-Hujar B, Kopyta I. Cerebral Palsy: Current Opinions on Definition, Epidemiology, Risk Factors, Classification and Treatment Options. Neuropsychiatr Dis Treat. 2020;16: 1505–1518. doi: https://doi.org/10.2147/NDT.S235165

37. Goldsmith S, Mcintyre S, Badawi N, Hansen M. Cerebral palsy after assisted reproductive technology: a cohort study. Dev Med Child Neurol. 2018;60(1):73–80. doi: https://doi.org/10.1111/dmcn.13577

38. Roychoudhury S, Lodha A, Synnes A, et al. Neurodevelopmental outcomes of preterm infants conceived by assisted reproductive technology. Am J Obstet Gynecol. 2021;225(3):276.e1–276.e9. doi: https://doi.org/10.1016/j.ajog.2021.03.027

39. Farhi A, Gabis LV, Frank S, et al. Cognitive achievements in school-age children born following assisted reproductive technology treatments: A prospective study. Early Hum Dev. 2021;155:105327. doi: https://doi.org/10.1016/j.earlhumdev.2021.105327

40. Rissanen E, Gissler M, Lehti V, Tiitinen A. The risk of psychiatric disorders among Finnish ART and spontaneously conceived children: Finnish population-based register study. Eur Child Adolesc Psychiatry. 2020;29(8):1155–1164. doi: https://doi.org/10.1007/s00787-019-01433-2

41. Wagenaar K, van Weissenbruch MM, van Leeuwen FE. Self reported behavioral and socioemotional functioning of 11 to 18 year old adolescents conceived by in vitro fertilization. Fertil Steril. 2011;95(2):611–616. doi: https://doi.org/10.1016/j.fertnstert.2010.04.076

42. Hvidtjorn D, Grove J, Schendel D. Risk of autism spectrum disorders in children born after assisted conception: a population based follow up study. J Epidemiol Community Health. 2011;65(6): 497–502. doi: https://doi.org/10.1136/jech.2009.093823

43. Djuwantono T, Aviani JK, Permadi W, et al. Risk of neurodevelopmental disorders in children born from different ART treatments: a systematic review and meta-analysis. J Neurodev Disord. 2020;12(1):33. doi: https://doi.org/10.1186/s11689-020-09347-w

44. Balayla J, Sheehy O, Fraser WD, et al. 3D-Study Research Group From the Integrated Research Network in Perinatology of Quebec and Eastern Ontario. Neurodevelopmental Outcomes After Assisted Reproductive Technologies. Obstet Gynecol. 2017;129(2):265–272. doi: https://doi.org/10.1097/AOG.0000000000001837

45. Carson C, Kurinczuk JJ, Sacker A, et al. Cognitive development following ART: effect of choice of comparison group, confounding and mediating factors. Hum Reprod. 2010;25(1):244–252. doi: https://doi.org/10.1093/humrep/dep344

46. Wagenaar K, Huisman J, Cohen-Kettenis PT, Delemarre-van de Waal HA. An overview of studies on early development, cognition, and psychosocial well-being in children born after in vitro fertilization. J Dev Behav Pediatr. 2008;29(3):219–230. doi: https://doi.org/10.1097/DBP.0b013e318173a575

47. Barbuscia A, Mills MC. Cognitive development in children up to age 11 years born after ART-a longitudinal cohort study. Hum Reprod. 2017;32(7):1482–1488. doi: https://doi.org/10.1093/humrep/dex102

48. Fauser BC, Devroey P, Diedrich K, et al. Evian Annual Reproduction (EVAR) Workshop Group 2011. Health outcomes of children born after IVF/ICSI: a review of current expert opinion and literature. Reprod Biomed Online. 2014;28(2):162–182. doi: https://doi.org/10.1016/j.rbmo.2013.10.013

49. Kopca T, Tulay P. Association of Assisted Reproductive Technology Treatments with Imprinting Disorders. Glob Med Genet. 2021;8(1):1–6. doi: https://doi.org/10.1055/s-0041-1723085

50. Santos MA, Kuijk EW, Macklon NS. The impact of ovarian stimulation for IVF on the developing embryo. Reproduction. 2010;139(1):23–34. doi: https://doi.org/10.1530/REP-09-0187

51. Rumbold AR, Sevoyan A, Oswald TK, et al. Impact of male factor infertility on offspring health and development. Fertil Steril. 2019;111(6):1047–1053. doi: https://doi.org/10.1016/j.fertnstert.2019.05.006

52. Leary С, Leese HJ, Sturmey RG. Human embryos from overweight and obese women display phenotypic and metabolic abnormalities. Hum Reprod. 2015;30(1):122–132. doi: https://doi.org/10.1093/humrep/deu276

53. Zhu Y, Yan H, Tang M, et al. Impact of maternal prepregnancy body mass index on cognitive and metabolic profiles of singletons born after in vitro fertilization/intracytoplasmic sperm injection. Fertil Steril. 2019;112(6):1094–1102.e2. doi: https://doi.org/10.1016/j.fertnstert.2019.08.054

54. Källén B. The risk of neurodisability and other long-term outcomes for infants born following ART. Semin Fetal Neonatal Med. 2014;19(4):239–44. doi: https://doi.org/10.1016/j.siny.2014.04.002.

55. Pinborg A, Wennerholm UB, Romundstad LB, et al. Why do singletons conceived after assisted reproduction technology have adverse perinatal outcome? Systematic review and meta-analysis. Hum Reprod Update. 2013;19(2):87–104. doi: https://doi.org/10.1093/humupd/dms044

56. Wu YC, Heineman KR, La Bastide-Van Gemert S, et al. Motor behaviour in infancy is associated with neurological, cognitive, and behavioural function of children born to parents with reduced fertility. Dev Med Child Neurol. 2020;62(9):1089–1095. doi: https://doi.org/10.1111/dmcn.14520

57. Pessione F, De Mouzon J, Deveaux A, et al. Risques de morbidité maternelle et périnatale en fécondation in vitro: une étude nationale de cohorte française. Gynecol Obstet Fertil Senol. 2020;48(4): 351–358. doi: https://doi.org/10.1016/j.gofs.2020.02.002

58. Cozzani M, Aradhya S, Goisis A. The cognitive development from childhood to adolescence of low birthweight children born after medically assisted reproduction-a UK longitudinal cohort study. Int J Epidemiol. 2021;50(5):1514–1523. doi: https://doi.org/10.1093/ije/dyab009

59. Qin JB, Sheng XQ, Wang H, et al. Worldwide prevalence of adverse pregnancy outcomes associated with in vitro fertilization/ intracytoplasmic sperm injection among multiple births: a systematic review and meta-analysis based on cohort studies. Arch Gynecol Obstet. 2017;295(3):577–597. doi: https://doi.org/10.1007/ s00404-017-4291-2

60. Zollner U, Dietl J. Perinatal risks after IVF and ICSI. J Perinat Med. 2013;41(1):17–22. doi: https://doi.org/10.1515/jpm-2012-0097

61. Spangmose AL, Ginström Ernstad E, Malchau S, et al. Obstetric and perinatal risks in 4601 singletons and 884 twins conceived after fresh blastocyst transfers: a Nordic study from the CoNARTaS group. Hum Reprod. 2020;35(4):805–815. doi: https://doi.org/10.1093/humrep/deaa032

62. Ginström Ernstad E, Spangmose AL, Opdahl S, et al. Perinatal and maternal outcome after vitrification of blastocysts: a Nordic study in singletons from the CoNARTaS group. Hum Reprod. 2019;34(11):2282–2289. doi: https://doi.org/10.1093/humrep/dez212

63. Zhao J, Xu B, Zhang Q, Li YP. Which one has a better obstetric and perinatal outcome in singleton pregnancy, IVF/ICSI or FET?: a systematic review and meta-analysis. Reprod Biol Endocrinol. 2016;14(1):51. doi: https://doi.org/10.1186/s12958-016-0188-3

64. Pontesilli M, Hof MH, Ravelli ACJ, et al. Effect of parental and ART treatment characteristics on perinatal outcomes. Hum Reprod. 2021;36(6):1640–1665. doi: https://doi.org/10.1093/humrep/deab008

65. Marsidi AM, Kipling LM, Kawwass JF, Mehta A. Influence of paternal age on assisted reproductive technology cycles and perinatal outcomes. Fertil Steril. 2021;116(2):380–387. doi: https://doi.org/10.1016/j.fertnstert.2021.03.033

66. Messerlian C, Platt RW, Tan SL, et al. Low-technology assisted reproduction and the risk of preterm birth in a hospital-based cohort. Fertil Steril. 2015;103(1):81–88.e2. doi: https://doi.org/10.1016/j.fertnstert.2014.10.006

67. Nagata C, Yang L, Yamamoto-Hanada K, et al. Complications and adverse outcomes in pregnancy and childbirth among women who conceived by assisted reproductive technologies: a nationwide birth cohort study of Japan environment and children’s study. BMC Pregnancy Childbirth. 2019;19(1):77. doi: https://doi.org/10.1186/s12884-019-2213-y

68. Pontesilli M, Painter RC, Grooten IJ, et al. Subfertility and assisted reproduction techniques are associated with poorer cardiometabolic profiles in childhood. Reprod Biomed Online. 2015;30(3): 258–267. doi: https://doi.org/10.1016/j.rbmo.2014.11.006

69. Kuiper DB, Seggers J, Schendelaar P, et al. Asthma and asthma medication use among 4-year-old offspring of subfertile couples — association with IVF? Reprod Biomed Online. 2015;31(5):711–714. doi: https://doi.org/10.1016/j.rbmo.2015.08.002

70. Wainstock T, Walfisch A, Shoham-Vardi I, et al. Fertility treatments and pediatric neoplasms of the offspring: results of a population-based cohort with a median follow-up of 10 years. Am J Obstet Gynecol. 2017;216(3):314.e1–314.e14. doi: https://doi.org/10.1016/j.ajog.2017.01.015

71. Lerner-Geva L, Boyko V, Ehrlich S, et al. Possible risk for cancer among children born following assisted reproductive technology in Israel. Pediatr Blood Cancer. 2017;64(4). doi: https://doi.org/10.1002/pbc.26292

72. Xu GF, Zhou CL, Xiong YM, et al. Reduced Intellectual Ability in Offspring of Ovarian Hyperstimulation Syndrome: A Cohort Study. EBioMedicine. 2017;20:263–267. doi: https://doi.org/10.1016/j.ebiom.2017.05.020

73. Aleksandrova NV. Anti-Müllerian hormone and its predictive value for assessing oocyte quality. Gynecology. 2020;22(6):21–26. (In Russ). doi: https://doi.org/10.26442/20795696.2020.6.200473

74. Zandstra H, Van Montfoort AP, Dumoulin JC. Does the type of culture medium used influence birthweight of children born after IVF? Hum Reprod. 2015;30(3):530–542. doi: https://doi.org/10.1093/humrep/deu346

75. Dumoulin JC, Land JA, Van Montfoort AP, et al. Effect of in vitro culture of human embryos on birthweight of newborns. Hum Reprod. 2010;25(3):605–612. doi: https://doi.org/10.1093/humrep/dep456

76. Nelissen EC, Van Montfoort AP, Smits LJ, et al. IVF culture medium affects human intrauterine growth as early as the second trimester of pregnancy. Hum Reprod. 2013;28(8):2067–2074. doi: https://doi.org/10.1093/humrep/det131

77. Kleijkers SH, van Montfoort AP, Smits LJ, et al. IVF culture medium affects post-natal weight in humans during the first 2 years of life. Hum Reprod. 2014;29(4):661–669. doi: https://doi.org/10.1093/humrep/deu025

78. Carrasco B, Boada M, Rodriguez I, et al. Does culture medium influence offspring birth weight? Fertil Steril. 2013;100(5):1283–1288. doi: https://doi.org/10.1016/j.fertnstert.2013.07.006

79. Kleijkers SH, van Montfoort AP, Smits LJ, et al. Age of G-1 PLUS v5 embryo culture medium is inversely associated with birthweight of the newborn. Hum Reprod. 2015;30(6):1352–1357. doi: https://doi.org/10.1093/humrep/dev075

80. Kleijkers SH, Eijssen LM, Coonen E, et al. Differences in gene expression profiles between human preimplantation embryos cultured in two different IVF culture media. Hum Reprod. 2015;30(10):2303–2311. doi: https://doi.org/10.1093/humrep/dev179

81. Lin S, Li M, Lian Y, et al. No effect of embryo culture media on birthweight and length of newborns. Hum Reprod. 2013;28(7): 1762–1767. doi: https://doi.org/10.1093/humrep/det095

82. Zandstra H, Smits LJM, van Kuijk SMJ, et al. No effect of IVF culture medium on cognitive development of 9-year-old children. Hum Reprod Open. 2018;2018(4):hoy018. doi: https://doi.org/10.1093/hropen/hoy018

83. Cornelisse S, Zagers M, Kostova E, et al. Preimplantation genetic testing for aneuploidies (abnormal number of chromosomes) in in vitro fertilisation. Cochrane Database Syst Rev. 2020;9(9):CD005291. doi: https://doi.org/10.1002/14651858.CD005291.pub3

84. Boulet SL, Kirby RS, Reefhuis J, et al. Assisted reproductive technology and birth defects among liveborn infants in Florida, Massachusetts, and Michigan, 2000–2010. JAMA Pediatr. 2016;170:e154934. doi: https://doi.org/10.1001/jamapediatrics.2015.4934

85. Jwa J, Jwa SC, Kuwahara A, et al. Risk of major congenital anomalies after assisted hatching: analysis of three-year data from the national assisted reproduction registry in Japan. Fertil Steril. 2015;104(1):71–78. doi: https://doi.org/10.1016/j.fertnstert.2015.03.029

86. Hansen M, Kurinczuk JJ, Milne E, et al. Assisted reproductive technology and birth defects: a systematic review and meta-analysis. Hum Reprod Update. 2013;19(4):330–353. doi: https://doi.org/10.1093/humupd/dmt006

87. Woldringh GH, Besselink DE, Tillema AH, et al. Karyotyping, congenital anomalies and follow-up of children after intracytoplasmic sperm injection with non-ejaculated sperm: a systematic review. Hum Reprod Update. 2010;16(1):12–19. doi: https://doi.org/10.1093/humupd/dmp030

88. Palermo GD, Neri QV, Takeuchi T, et al. Genetic and epigenetic characteristics of ICSI children. Reprod Biomed Online. 2008;17(6):820–833. doi: https://doi.org/10.1016/s1472-6483(10)60411-7

89. Belva F, Henriet S, Van den Abbeel E, et al. Neonatal outcome of 937 children born after transfer of cryopreserved embryos obtained by ICSI and IVF and comparison with outcome data of fresh ICSI and IVF cycles. Hum Reprod. 2008;23(10):2227–2238. doi: https://doi.org/10.1093/humrep/den254

90. Belva F, Bonduelle M, Roelants M, et al. Neonatal health including congenital malformation risk of 1072 children born after vitrified embryo transfer. Hum Reprod. 2016;31(7):1610–1620. doi: https://doi.org/10.1093/humrep/dew103

91. Sazhenova EA, Lebedeva IN. Epigenetic Mosaicism in Diseases of Genomic Imprinting. Russian Journal of Genetics. 2019;55(10):1137-1150. (In Russ). doi: https://doi.org/10.1134/S0016675819100114

92. Thompson J R, Williams C J, Ph D. Genomic imprinting and assisted reproductive technology: connections and potential risks. Semin Reprod Med. 2005;23(03):285–295. doi: https://doi.org/10.1055/s-2005-872457

93. Ghosh J, Coutifaris C, Sapienza C, Mainigi M. Global DNA methylation levels are altered by modifiable clinical manipulations in assisted reproductive technologies. Clin Epigenetics. 2017;9:14. doi: https://doi.org/10.1186/s13148-017-0318-6

94. Manipalviratn S, DeCherney A, Segars J. Imprinting disorders and assisted reproductive technology. Fertil Steril. 2009;91(2): 305–315. doi: https://doi.org/10.1016/j.fertnstert.2009.01.002

95. Vermeiden JPW, Bernardus RE, Bernardus RE. Are imprinting disorders more prevalent after human in vitro fertilization or intracytoplasmic sperm injection? Fertil Steril. 2013;99(3):642–651. doi: https://doi.org/10.1016/j.fertnstert.2013.01.125

96. DeBaun MR, Niemitz EL, Feinberg AP. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet. 2003;72(1): 156–160. doi: https://doi.org/10.1086/346031

97. Shi W, Haaf T. Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure. Mol Reprod Dev. 2002;63(3):329–334. doi: https://doi.org/10.1002/mrd.90016

98. Cox GF, Bürger J, Lip V. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet. 2002;71(1):162–164. doi: https://doi.org/10.1086/341096

99. Kagami M, Nagai T, Fukami M, et al. Silver-Russell syndrome in a girl born after in vitro fertilization: partial hypermethylation at the differentially methylated region of PEG1/MEST. J Assist Reprod Genet. 2007;24(04):131–136. doi: https://doi.org/10.1007/s10815-006-9096-3

100. Lefebvre L, Viville S, Barton SC. et al. Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest. Nat Genet. 1998;20(2):163–169. doi: https://doi.org/10.1038/2464

101. Lazaraviciute G, Kauser M, Bhattacharya S, et al. A systematic review and meta-analysis of DNA methylation levels and imprinting disorders in children conceived by IVF/ICSI compared with children conceived spontaneously. Hum Reprod Update. 2014;20(6): 840–852. doi: https://doi.org/10.1093/humupd/dmu033

102. Kai CM, Main KM, Andersen AN, et al. Serum insulin-like growth factor-I (IGF-I) and growth in children born after assisted reproduction. J Clin Endocrinol Metab. 2006;91(11):4352–4360. doi: https://doi.org/10.1210/jc.2006-0701

103. Argyraki M, Damdimopoulou P, Chatzimeletiou K, et al. In-utero stress and mode of conception: impact on regulation of imprinted genes, fetal development and future health. Hum Reprod Update. 2019; 25(6):777–801. doi: https://doi.org/10.1093/humupd/dmz025

104. Choux C, Binquet C, Carmignac V, et al. The epigenetic control of transposable elements and imprinted genes in newborns is affected by the mode of conception: ART versus spontaneous conception without underlying infertility. Hum Reprod. 2018;33(2):331–340. doi: https://doi.org/10.1093/humrep/dex366

105. Khafizova NR, Merzlyakova DR, Safina YuF. Russel – Silver syndrome a 7-month-old child: case report. Russian Journal of Woman and Child Health. 2021;4(1):103–105. (In Russ). doi: https://doi.org/10.32364/2618-8430-2021-4-1-103-105]

106. Bratsberg B, Rogeberg O, Skirbekk V. Fathers of children conceived using ART have higher cognitive ability scores than fathers of naturally conceived children. Hum Reprod. 2020;35(6): 1461–1468. doi: https://doi.org/10.1093/humrep/deaa119

107. Barone C, Fouge`re D, Martel K, Reading aloud to children, social inequalities, and vocabulary development: evidence from a randomized controlled trial. In: Social Science Research Network. Available online: https://ssrn.com/abstract=3648798. Accessed on April 24, 2022.

108. Downey DB, Von Hippel PT, Broh BA. Are schools the great equalizer? Cognitive inequality during the summer months and the school year. Am Sociol Rev. 2004;69(5):613–635. doi: https://doi.org/10.1177/000312240406900501

109. Chambers GM, Hoang VP, Sullivan EA, et al. The impact of consumer affordability on access to assisted reproductive technologies and embryo transfer practices: an international analysis. Fertil Steril. 2014;101(1):191–198.e4. doi: https://doi.org/10.1016/j.fertnstert.2013.09.005.

110. Carson C, Kelly Y, Kurinczuk JJ, et al. Effect of pregnancy planning and fertility treatment on cognitive outcomes in children at ages 3 and 5: longitudinal cohort study. BMJ. 2011;343:d4473. doi: https://doi.org/10.1136/bmj.d4473

111. Goisis A, Palma M. Medically assisted reproduction and parent-child relationships during adolescence: evidence from the UK Millennium Cohort Study. Hum Reprod. 2021;36(3):702–711. doi: https://doi.org/10.1093/humrep/deaa350

112. Zhang X. The effects of parental education and family income on mother–child relationships, father–child relationships, and family environments in the People’s Republic of China. Fam Proc. 2012;51(4):483–497. doi: https://doi.org/10.1111/j.1545-5300.2011.01380.x

113. Barnes J, Sutcliffe AG, Kristoffersen I, et al. The influence of assisted reproduction on family functioning and children’s socio‐ emotional development: results from a European study. Hum Reprod. 2004;19(6):1480–1487. doi: https://doi.org/10.1093/humrep/deh239

114. Reig A, Seli E. The association between assisted reproductive technologies and low birth weight. Curr Opin Obstet Gynecol. 2019;31(3):183–187. doi: https://doi.org/10.1097/ GCO.0000000000000535

115. Baranov AA, Al’bitskii VYu, Namazova-Baranova LS, Terletskaya RN. Sostoyanie zdorov’ya detei sovremennoi Rossii. Moscow: Pediatr; 2018. 116 p. (In Russ).


Review

For citations:


Belyaeva I.А., Namazova-Baranova L.S., Baranov A.A., Efendieva K.Y., Karkashadze G.A., Dedyukina E.S., Serebryakova E.N., Konstantinidi T.A., Molodchenkov A.I., Gogberashvili T.Yu. Long-Term Development and Health of Children Conceived by Assisted Reproductive Technologies. Current Pediatrics. 2022;21(2):72-82. (In Russ.) https://doi.org/10.15690/pf.v19i2.2404

Views: 1014


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)