Preview

Current Pediatrics

Advanced search

Correlations of Gene Variants LEP rs2167270, LEPR rs1137100, GHRL rs696217, rs27647, and NPY rs16147 with Obesity and Adolescent Eating Behavior: Case-Control Study

https://doi.org/10.15690/vsp.v21i3.2428

Abstract

Background. Childhood obesity is topical global healthcare issue. The correlations between variable regions of genes encoding leptin and its receptor, ghrelin and neuropeptide Y, and the risk of obesity development in children have not been confirmed completely. Mechanisms for implementing such correlation via the influence of genes on children’s behavior remain unexplored.

Objective. The aim of the study is to examine the correlation between leptin, leptin receptor, ghrelin and neuropeptide Y gene variants and obesity in adolescents and their eating behavior.

Methods. The study included children aged from 10 to 18 years with exogenous constitutive obesity and normal body weight. Variants in genes for leptin LEP rs2167270, leptin receptor LEPR rs1137100, ghrelin GHRL rs696217 and rs27647, neuropeptide Y NPY rs16147 were determined. Adolescents’ eating behavior was evaluated via psychometric questionnaires DEBQ (Dutch Eating Behavior Questionnaire) and TFEQ (the Three Factor Eating Questionnaire).

Results. Gene variant distribution analysis in 150 obese and 150 normal weight children has revealed correlation with obesity for the variant rs1137100 of the LEPR gene (p = 0.001). Variants rs2167270 of the LEP gene (p = 0.015), rs696217 of the GHRL gene (p = 0.040), and rs16147 of the NPY gene (p = 0.020) were associated with adolescent eating behavior predisposing to obesity.

Conclusion. The leptin receptor gene variant rs1137100 is associated with obesity in adolescents, and the variants rs2167270 of the leptin gene, rs696217 of the ghrelin gene, and rs16147 of the neuropeptide Y gene are associated with changes in eating behavior.

About the Authors

Olga V. Kochetova
Ufa Federal Research Center of the Russian Academy of Sciences
Russian Federation

Ufa


Disclosure of interest:

Not declared



Ziliya A. Shangareeva
Bashkir State Medical University
Russian Federation

Ufa


Disclosure of interest:

Not declared.



Tatyana V. Viktorova
Bashkir State Medical University
Russian Federation

Ufa


Disclosure of interest:

Not declared



Gulnaz F. Korytina
Ufa Federal Research Center of the Russian Academy of Sciences
Russian Federation

Ufa


Disclosure of interest:

Not declared



Vitaliy V. Viktorov
Bashkir State Medical University
Russian Federation

Ufa


Disclosure of interest:

Not declared



References

1. WHO. Obesity and overweight. In: World Health Organization. 09 June 2021. Available online: https://www.who.int/newsroom/fact-sheets/detail/obesity-and-overweight. Accessed on: May 18, 2022.

2. WHO/UNISEF. The Extension of the 2025 Maternal, Infant and Young Child Nutrition Targets to 2030. In: World Health Organization. Available online: https://www.who.int/docs/default-source/nutritionlibrary/global-targets-2025/discussion-paper-extensiontargets-2030.pdf. Accessed on May 18, 2022.

3. Di Cesare M, Sorić M, Bovet P, et al. The epidemiological burden of obesity in childhood: a worldwide epidemic requiring urgent action. BMC Med. 2019;17(1):212. doi: https://doi.org/10.1186/S12916-019-1449-84

4. Namazova-Baranova LS, Yeletskaya KA, Kaytukova EV, Маkarova SG. Evaluation of the Physical Development of Children of Secondary School Age: an Analysis of the Results of a Cross-Sectional Study. Pediatricheskaya farmakologiya — Pediatric pharmacology. 2018;15(4):333–342. (In Russ). doi: https://doi.org/10.15690/pf.v15i4.1948

5. Chubarov TV, Bessonova AV, Zhdanova OA, et al. Risk Factors for Obesity Development in Different Periods of Childhood. Obesity and metabolism. 2021;18(2):163–168. (In Russ). doi: https://doi.org/10.14341/omet12756

6. Bocharova OV, Teplyakova ED. Children and adolescents’ obesity is the 21st century health problem. Kazan medical journal. 2020;101(3):381–388. (In Russ). doi: https://doi.org/10.17816/KMJ2020-381

7. Mirza NM, Yanovski JA. Prevalence and Consequences of Pediatric Obesity. In: Handbook of obesity: Epidemiology, etiology, and physiopathology. Boca Raton, FL: Taylor & Francis Ltd.; 2014. pp. 55–74.

8. Kelsey MM, Zaepfel A, Bjornstad P, et al. Age-related consequences of childhood obesity. Gerontology. 2014;60(3): 222–228. doi: https://doi.org/10.1159/000356023

9. Güngör N. Overweight and obesity in children and adolescents. J Clin Res Pediatr Endocrinol. 2014;6(3):129–143. doi: https://doi.org/10.4274/Jcrpe.1471

10. Netrebenko OK. Ozhirenie u detei: istoki problemy i poiski reshenii. Pediatria. Journal n.a. G.N. Speransky. 2011;90(6):104–113. (In Russ).

11. Vaisse C, Clement K, Durand E, et al. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest. 2000;106(2):253–262. doi: https://doi.org/10.1172/JCI9238

12. Farooqi IS, O’Rahilly S. Genetics of obesity in humans. Endocr Rev. 2006;27(7):710–718. doi: https://doi.org/10.1210/er.2006-0040

13. Peterkova VA, Bezlepkina OB, Bolotova NV, et al. Ozhirenie u detei: Clinical guidelines. Problems of Endocrinology. 2021;67(5):67–83. (In Russ).] doi: https://doi.org/10.14341/probl12802

14. Yengo L, Sidorenko J, Kemper KE, et al. Meta-analysis of genomewide association studies for height and body mass index in ~700.000 individuals of European ancestry. Hum Mol Genet. 2018;27(20):3641– 3649. doi: https://doi.org/10.1093/hmg/ddy271

15. Goodarzi MO. Genetics of obesity: what genetic association studies have taught us about the biology of obesity and its complications. Lancet Diabetes Endocrinol. 2018;6(3):223–236. doi: https://doi.org/10.1016/S2213-8587(17)30200-0

16. Locke AE, Kahali B, Berndt SI, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206. doi: https://doi.org/10.1038/nature14177

17. Kryuchkova ON, Shakhbazidi D, Shakhbazidi G. Leptin — a key element in the pathogenesis of obesity. Crimean Journal of Internal Diseases. 2012;(1):33–36. (In Russ).

18. Kovarenko MA, Ruyatkina LA, Bodaveli OV, Petrishcheva MS. Leptin: fiziologicheskie i patologicheskie aspekty deistviya. Vestnik NGU. Biologiya, klinicheskaya meditsina. 2003;1(1):59–74. (In Russ).

19. Konturek PC, Sliwowski Z, Drozdowicz D, Kwiecien S. Neural aspects of ghrelin-induced gastroprotection against mucosal injury induced by noxious agents. J Physiol Pharmacol. 2006; 57(Suppl 6):63–76.

20. Yildiz BO, Suchard MA, Wong ML, et al. Alterations in the dynamics of circulating ghrelin, adiponectin, and leptin in human obesity. Proc Natl Acad Sci U S А. 2004;101(28):10434–10439. doi: https://doi.org/10.1073/pnas.0403465101

21. Romantsova TI, Volkova GE. Leptin i grelin: antagonizm i vzaimodeistvie v regulyatsii energeticheskogo obmena. Obesity and metabolism. 2005;2(2):2–9. (In Russ).

22. Dhillon H, Kalra SP, Prima V, et al. Central leptin gene therapy suppresses body weight gain, adiposity and serum insulin without affecting food consumption in normal rats: a long-term study. Regul Pept. 2001;99(2-3):69–77. doi: https://doi.org/10.1016/S0167-0115(01)00237-3

23. Kroemer NB, Krebs L, Kobiella A, et al. Fasting levels of ghrelin covary with the brain response to food pictures. Addict Biol. 2013;18(5):855–862. doi: https://doi.org/10.1111/j.1369-1600.2012.00489.x

24. Allbrand M, Аman J, Lodefalk M. Placental ghrelin and leptin expression and cord blood ghrelin, adiponectin, leptin, and C-peptide levels in severe maternal obesity. J Matern Fetal Neonatal Med. 2018;31(21):2839–2846. doi: https://doi.org/10.1080/14767058.2017.1358262

25. Kalra SP, Bagnasco M, Otukonyong EE, et al. Rhythmic, reciprocal ghrelin and leptin signaling; new insight of the developing of obesity. Regul Рept. 2003;111(1-3):1–11. doi: https://doi.org/10.1016/S0167-0115(02)00305-1

26. Mishchenkova TV. Tipy i gormony pishchevogo povedeniya u bol’nykh s abdominal’nym ozhireniem. [dissertation]. Moscow; 2012. 155 p. (In Russ).

27. Raskiliene A, Smalinskiene A, Kriaucioniene V, et al. Associations of MC4R, LEP, and LEPR Polymorphisms with ObesityRelated Parameters in Childhood and Adulthood. Genes (Basel). 2021;12(6):949. doi: https://doi.org/10.3390/genes12060949

28. Ievleva KD, Bairova TA, Rychkova LV, et al. Metabolism and obesity: role of leptin receptor gene. Acta Biomedica Scientifica. 2017;2(5-1):56–62. (In Russ). doi: https://doi.org/10.12737/article_59e85cb55584e4.51145791

29. Bondareva EA, Godina EZ. Association of the polymorphic gene systems FTO and GHRL with risk of obesity development in children and adolescents. Moscow University Anthropology Bulletin (Vestnik Moskovskogo Universiteta. Seria XXIII. Antropologia. 2013;(1): 111–119. (In Russ).

30. Zain SM, Mohamed Z, Jalaludin MY, et al. Comprehensive evaluation of the neuropeptide-Y gene variants in the risk of obesity: a case-control study and meta-analysis. Pharmacogenet genomics. 2015;25(10):501–510. doi: https://doi.org/10.1097/FPC.0000000000000164

31. Van Rossum CTM, Pijl H, Adan RAH, et al. Polymorphisms in the NPY and AGRP genes and body fatness in Dutch adults. Int J Obes (Lond). 2006;30(10):1522–1528. doi: https://doi.org/10.1038/Sj.ijo.0803314

32. Yeung EH, Zhang C, Chen J, et al. Polymorphisms in the neuropeptide Y gene and the risk of obesity: findings from two prospective cohorts. J Clin Endocrinol Metabol. 2011;96(12): E2055–E2062. doi: https://doi.org/10.1210/jc.2011-0195

33. Karvonen MK, Ruottinen S, Koulu M, et al. Nutrient intake, weight, and Leu7Pro polymorphism in prepro-neuropeptide Y in children. J Clin Endocrinol Metabol. 2006;91(11):4664–4668. doi: https://doi.org/10.1210/jc.2005-2083

34. Katus U, Villa I, Ringmets I, et al. Neuropeptide Y gene variants in obesity, dietary intake, blood pressure, lipid and glucose metabolism: A longitudinal birth cohort study. Peptides. 2021;139:170524. doi: https://doi.org/10.1016/j.peptides.2021.170524

35. Valladares M, Obregón AM, Weisstaub G, et al. Association between feeding behavior, and genetic polymorphism of leptin and its receptor in obese Chilean children. Nutr Hosp. 2015;31(3): 1044–1051. doi: https://doi.org/10.3305/nh.2015.31.3.8049

36. Federal’nye klinicheskie rekomendatsii (protokoly) po vedeniyu detei s endokrinnymi zabolevaniyami. Dedov II, Peterkova VA, eds. Moscow: Praktika; 2014. 442 p. (In Russ).

37. WHO child growth standards: growth velocity based on weight, length and head circumference: methods and development. Geneva: WHO Press; 2009. 242 p.

38. Krylov MYu, Benevolenskaya LI, Myakotkin VA, et al. Leptin A19G polymorphism and leptin receptor Gln223Аrg and Lys109Аrg polymorphisms in postmenopausal osteoporosis. Nauchcno-Prakticheskaya Revmatologia = Rheumatology Science and Practice. 2010;48(5):27–31. (In Russ). doi: https://doi.org/10.14412/1995-4484-2010-727

39. Yang Y, Li W, Zhao J, et al. Association between ghrelin gene (GHRL) polymorphisms and clinical response to atypical antipsychotic drugs in Han Chinese schizophrenia patients. Behav Brain Funct. 2012;8:11. doi: https://doi.org/10.1186/1744-9081-8-11

40. Patel R, Dwivedi M, Mansuri MS, et al. Association of Neuropeptide Y (NPY) and Interleukin-1beta (IL1B). GenotypePhenotype Correlation and Plasma Lipids with Type-II Diabetes. PLoS One. 2016;11(10):e0164437. doi: https://doi.org/10.1371/journal.pone.0164437

41. Kavazidou E, Proios M, Liolios I, et al. Structure validity of the three-factor eating questionnaire-R18 in Greek population. JHSE. 2012;7(1):218–226. doi: https://doi.org/10.4100/jhse.2012.71.01

42. Savchikova YuL. Psikhologicheskie osobennosti zhenshchin s problemoi vesa. [abstract of dissertation]. St. Petersburg; 2005. 25 p. (In Russ).

43. Dadaeva VA, Eganyan RA, Korolev AI, et al. Unhealthy eating behaviors. The Russian Journal of Preventive Medicine. 2021;24(4):113–119. (In Russ). doi: https://doi.org/10.17116/profmed202124041113

44. Stunkard AJ, Messick S. The three-factor eating questionnaire to measure dietary restraint. disinhibition and hunger. J Psychosom Res. 1985;29(1):71–83. doi: https://doi.org/10.1016/0022-3999(85)90010-8

45. Gauderman WJ. Sample size requirements for matched case-control studies of gene-environment interaction. Stat Med. 2002;21(1):35–50. doi: https://doi.org/10.1002/sim.973

46. Angel-Chávez LI, Tene-Pérez CE, Castro E. Leptin receptor gene K656N polymorphism is associated with low body fat levels and elevated high-density cholesterol levels in Mexican children and adolescents. Endocr Res. 2012;37(3):124–134. doi: https://doi.org/10.3109/07435800.2011.648360

47. Hollensted M, Ahluwalia TS, Have CT, et al. Common variants in LEPR, IL6, AMD1, and NAMPT do not associate with risk of juvenile and childhood obesity in Danes: a case-control study. BMC Med Genet. 2015;16:105. doi: https://doi.org/10.1186/S12881-015-0253-3

48. Dos Santos Rocha A, de Cássia Ribeiro-Silva R, Nunes de Oliveira Costa G, et al. Food Consumption as a Modifier of the Association between LEPR Gene Variants and Excess Body Weight in Children and Adolescents: A Study of the SCAALA Cohort. Nutrients. 2018;10(8):1117. doi: https://doi.org/10.3390/nu10081117

49. Tabassum R, Mahendran Y, Dwivedi OP, et al. Common variants of IL6, LEPR, and PBEF1 are associated with obesity in Indian children. Diabetes. 2012;61(3):626–631. doi: https://doi.org/10.2337/db11-1501

50. Ievleva KD. Zakonomernosti izmeneniya energeticheskogo obmena i mekhanizm ego geneticheskoi determinatsii u podrostkov dvukh etnicheskikh grupp s izbytochnoi massoi tela. [dissertation]. Irkutsk; 2022. 138 р. (In Russ).

51. Hohmann S, Buchmann AF, Witt SH, et al. Increasing association between a neuropeptide Y promoter polymorphism and body mass index during the course of development. Pediatr Obes. 2012;(6):453–460. doi: https://doi.org/10.1111/j.2047-6310.2012.00069.x


Review

For citations:


Kochetova O.V., Shangareeva Z.A., Viktorova T.V., Korytina G.F., Viktorov V.V. Correlations of Gene Variants LEP rs2167270, LEPR rs1137100, GHRL rs696217, rs27647, and NPY rs16147 with Obesity and Adolescent Eating Behavior: Case-Control Study. Current Pediatrics. 2022;21(3):242-251. (In Russ.) https://doi.org/10.15690/vsp.v21i3.2428

Views: 834


ISSN 1682-5527 (Print)
ISSN 1682-5535 (Online)