Повышение качества отчетов о наблюдательных исследованиях в эпидемиологии (STROBE): разъяснения и уточнения
https://doi.org/10.15690/vsp.v21i3.2426
Аннотация
Большинство медицинских исследований являются наблюдательными (observational). Сообщения о таких исследованиях часто невысокого качества, что затрудняет оценку сильных и слабых сторон работы, а также обобщаемости (generalisability) ее результатов. Принимая во внимание эмпирические свидетельства и теоретические соображения, группа методологов, исследователей и научных редакторов разработала рекомендации «Повышение качества отчетов о наблюдательных исследованиях в эпидемиологии (STROBE): разъяснения и уточнения». Рекомендации STROBE содержат 22 пункта, связанных с оформлением следующих разделов научных статей: название, аннотация, введение, методы, результаты и их обсуждение, при этом 18 пунктов являются общими для когортных исследований (cohort studies), исследований «случай-контроль» (case-control studies) и одномоментных исследований (cross-sectional studies); 4 пункта специфичны для каждого из указанных дизайнов исследований (study designs). STROBE — руководство для авторов, необходимое для повышения качества отчетов о наблюдательных исследованиях, облегчающее критическую оценку исследования и его интерпретацию рецензентами, редакторами журналов и читателями. Цель этой разъясняющей и уточняющей статьи — способствовать более широкому применению, пониманию и распространению стандартов STROBE. В ней даются разъяснение смысла и обоснование применения каждого пункта руководства (checklist). По каждому пункту приводятся один или несколько опубликованных примеров правильного представления исследований и, при возможности, библиографические ссылки на подходящие эмпирические исследования и методологическую литературу. Представлены примеры потоковых диаграмм (flow diagrams) для описания последовательности исследования. Рекомендации STROBE, настоящая статья и соответствующий веб-сайт (http://www.strobe-statement.org/) должны стать полезным источником для повышения качества отчетов о результатах наблюдательных исследований.
Настоящая статья является переводом оригинальной публикации под редакцией д.м.н. Р.Т. Сайгитова. Перевод впервые опубликован в Digital Diagnostics. doi: 10.17816/DD70821. Публикуется с незначительными изменениями, связанными с литературным редактированием текста перевода.
Об авторах
J. P. VandenbrouckeНидерланды
Лейден
Раскрытие интересов:
Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить
E. von Elm
Швейцария
Берн, Фрайбург
Раскрытие интересов:
Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить
D. G. Altman
Великобритания
Оксфорд
Раскрытие интересов:
Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить
P. C. Gotzsche
Дания
Копенгаген
Раскрытие интересов:
Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить
C. D. Mulrow
Соединённые Штаты Америки
Сан-Антонио
Раскрытие интересов:
Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить
S. J. Pocock
Великобритания
Лондон
Раскрытие интересов:
Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить
C. Poole
Соединённые Штаты Америки
Чапел-Хилл
Раскрытие интересов:
Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить
J. J. Schlesselman
Соединённые Штаты Америки
Питтсбург
Раскрытие интересов:
Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить
M. Egger
Швейцария
Берн, Бристоль
Раскрытие интересов:
Авторы статьи подтвердили отсутствие конфликта интересов, о котором необходимо сообщить
Список литературы
1. Glasziou P, Vandenbroucke JP, Chalmers I. Assessing the quality of research. BMJ. 2004;328(7430):39–41. doi: https://doi.org/10.1136/bmj.328.7430.39
2. Funai EF, Rosenbush EJ, Lee MJ, Del Priore G. Distribution of study designs in four major US journals of obstetrics and gynecology. Gynecol Obstet Invest. 2001;51(1):8–11. doi: https://doi.org/10.1159/000052882
3. Scales CD, Norris RD, Peterson BL, et al. Clinical research and statistical methods in the urology literature. J Urol. 2005;174(4 Pt 1):1374–1379. doi: https://doi.org/10.1097/01.ju.0000173640.91654.b5
4. Pocock SJ, Collier TJ, Dandreo KJ, et al. Issues in the reporting of epidemiological studies: a survey of recent practice. BMJ. 2004;329(7471):883. doi: https://doi.org/10.1136/bmj.38250.571088.55
5. Tooth L, Ware R, Bain C, et al. Quality of reporting of observational longitudinal research. Am J Epidemiol. 2005;161(3):280–288. doi: https://doi.org/10.1093/aje/kwi042
6. Von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Epidemiology. 2007;18(6):800–804. doi: https://doi.org/10.1097/EDE.0b013e3181577654
7. Mihailovic A, Bell CM, Urbach DR. Users’ guide to the surgical literature. Case-control studies in surgical journals. Can J Surg. 2005;48(2):148–151.
8. Rushton L. Reporting of occupational and environmental research: use and misuse of statistical and epidemiological methods. Occup Environ Med. 2000;57(1):1–9. doi: https://doi.org/10.1136/oem.57.1.1
9. Rothman KJ. No adjustments are needed for multiple comparisons. Epidemiology. 1990;1(1):43–46. doi: https://doi.org/10.1097/00001648-199001000-00010
10. Moonesinghe R, Khoury MJ, Janssens AC. Most published research findings are false-but a little replication goes a long way. PLoS Med. 2007;4(2):e28. doi: https://doi.org/10.1371/journal.pmed.0040028
11. Jenicek M. Clinical Case Reporting. Evidence-Based Medicine. Oxford: Butterworth-Heinemann; 1999. 117 p.
12. Vandenbroucke JP. In defense of case reports and case series. Ann Intern Med. 2001;134(4): 330–334. doi: https://doi.org/10.7326/0003-4819-134-4-200102200-00017
13. Bossuyt PM, Reitsma JB, Bruns DE, et al. Towards complete and accurate reporting of studies of diagnostic accuracy: The STARD Initiative. Ann Intern Med. 2003;138(1):40–44. doi: https://doi.org/10.7326/0003-4819-138-1-200301070-00010
14. McShane LM, Altman DG, Sauerbrei W, et al. REporting recommendations for tumour MARKer prognostic studies (REMARK). Br J Cancer. 2005;93(4):387–391. doi: https://doi.org/10.1038/sj.bjc.6602678
15. Ioannidis JP, Gwinn M, Little J, et al. A road map for efficient and reliable human genome epidemiology. Nat Genet. 2006;38(1):3–5. doi: https://doi.org/10.1038/ng0106-3
16. Rodrigues L, Kirkwood BR. Case-control designs in the study of com mon diseases: updates on the demise of the rare disease assumption and the choice of sampling scheme for controls. Int J Epidemiol. 1990;19(1):205–213. doi: https://doi.org/10.1093/ije/19.1.205
17. Rothman KJ, Greenland S. Case-Control Studies. In: Modern epidemiology. Rothman KJ, Greenland S, eds. 2nd ed. Philadelphia: Lippincott Raven; 1998. pp. 93–114.
18. Forand SP. Leukaemia incidence among workers in the shoe and boot manufacturing industry: a case-control study. Environ Health. 2004;3(1):7. doi: https://doi.org/10.1186/1476-069X-3-7
19. Benson K, Hartz AJ. A comparison of observational studies and randomized, controlled trials. N Engl J Med. 2000;342(25):1878–1886. doi: https://doi.org/10.1056/NEJM200006223422506
20. Gøtzsche PC, Harden A. Searching for non-randomised studies. Draft chapter 3. Cochrane Non-Randomised Studies Methods Group; 2002. Available online: http://www.cochrane.dk/nrsmg. Accessed on September 10, 2007.
21. Lohse N, Hansen AB, Pedersen G, et al. Survival of persons with and without HIV infection in Denmark, 1995–2005. Ann Intern Med. 2007;146(2):87–95. doi: https://doi.org/10.7326/0003-4819-146-2-200701160-00003
22. Information for authors. In: American Journal of Epidemiology. Available online: http://www.oxfordjournals.org/aje/for_authors/index.html. Accessed on September 10, 2007.
23. Haynes RB, Mulrow CD, Huth EJ, et al. More informative abstracts revisited. Ann Intern Med. 1990;113(1):69–76. doi: https://doi.org/10.7326/0003-4819-113-1-69
24. Taddio A, Pain T, Fassos FF, et al. Quality of nonstructured and structured abstracts of original research articles in the British Medical Journal, the Canadian Medical Association Journal and the Journal of the American Medical Association. CMAJ. 1994; 150(10):1611–1615.
25. Hartley J, Sydes M. Which layout do you prefer? An analysis of readers’ preferences for different typographic layouts of structured abstracts. J Inform Sci. 1996;22(1):27–37. doi: https://doi.org/10.1177/016555159602200103
26. Viner RM, Cole TJ. Adult socioeconomic, educational, social, and psychological outcomes of childhood obesity: a national birth cohort study. BMJ. 2005;330(7504):1354. doi: https://doi.org/10.1136/bmj.38453.422049.E0
27. McCauley J, Kern DE, Kolodner K, et al. The “battering syndrome”: prevalence and clinical characteristics of domestic violence in primary care internal medicine practices. Ann Intern Med. 1995;123(10):737–746. doi: https://doi.org/10.7326/0003-4819-123-10-199511150-00001
28. McEvoy SP, Stevenson MR, McCartt AT, et al. Role of mobile phones in motor vehicle crashes resulting in hospital attendance: a case-crossover study. BMJ. 2005;331(7514):428. doi: https://doi.org/10.1136/bmj.38537.397512.55
29. Vandenbroucke JP. Prospective or retrospective: what’s in a name? BMJ. 1991;302(6771):249–250. doi: https://doi.org/10.1136/bmj.302.6771.249
30. Last JM. A Dictionary of Epidemiology. New York: Oxford University Press; 2000.
31. Miettinen OS. Theoretical Epidemiology: principles of occurrence research in medicine. New York: Wiley; 1985. pp. 64–66.
32. Rothman KJ, Greenland S. Types of Epidemiologic Studies. In: Modern epidemiology. Rothman KJ, Greenland S, eds. 2nd ed. Lippincott Raven; 1998. pp. 74–75.
33. MacMahon B, Trichopoulos D. Epidemiology, principles and methods. 2nd ed. Boston: Little, Brown; 1996. 81 p. doi: https://doi.org/10.1016/S0033-3506(97)00047-4
34. Lilienfeld AM. Foundations of Epidemiology. New York: Oxford University Press; 1976.
35. Ridker PM, Hennekens CH, Lindpaintner K, et al. Mutation in the gene coding for coagulation factor V and the risk of myocardial infarction, stroke, and venous thrombosis in apparently healthy men. N Engl J Med. 1995;332(14):912–917. doi: https://doi.org/10.1056/NEJM199504063321403
36. Goodman KJ, O’Rourke K, Day RS, et al. Dynamics of Helicobacter pylori infection in a US-Mexico cohort during the first two years of life. Int J Epidemiol. 2005;34(6):1348–1355. doi: https://doi.org/10.1093/ije/dyi152
37. Altman DG, De Stavola BL, Love S.B, Stepniewska KA. Review of survival analyses published in cancer journals. Br J Cancer. 1995;72(2):511–518. doi: https://doi.org/10.1038/bjc.1995.364
38. Cerhan JR, Wallace RB, Folsom AR, et al. Transfusion history and cancer risk in older women. Ann Intern Med. 1993;119(1): 8–15. doi: https://doi.org/10.7326/0003-4819-119-1199307010-00002
39. Freeman LE, Dennis LK, Lynch CF, et al. Toenail arsenic content and cutaneous melanoma in Iowa. Am J Epidemiol. 2004;160(7):679–687. doi: https://doi.org/10.1093/aje/kwh267
40. Canto JG, Allison JJ, Kiefe CI, et al. Relation of race and sex to the use of reperfusion therapy in Medicare beneficiaries with acute myocardial infarction. N Engl J Med. 2000;342(15):1094–1100. doi: https://doi.org/10.1056/NEJM200004133421505
41. Metzkor-Cotter E, Kletter Y, Avidor B, et al. Long-term serological analysis and clinical follow-up of patients with cat scratch disease. Clin Infect Dis. 2003;37(9):1149–1154. doi: https://doi.org/10.1086/378738
42. Johnson ES. Bias on withdrawing lost subjects from the analysis at the time of loss, in cohort mortality studies, and in follow-up methods. J Occup Med. 1990;32(3):250–254. doi: https://doi.org/10.1097/00043764-199003000-00013
43. Berkson J. Limitations of the application of fourfold table analysis to hospital data. Biom Bull. 1946;2(3):47. doi: https://doi.org/10.2307/3002000
44. Feinstein AR, Walter SD, Horwitz RI. An analysis of Berkson’s bias in case-control studies. J Chronic Dis. 1986l;39(7):495–504. doi: https://doi.org/10.1016/0021-9681(86)90194-3
45. Jick H, Vessey MP. Case-control studies in the evaluation of drug-induced illness. Am J Epidemiol. 1978;107(1):1–7. doi: https://doi.org/10.1093/oxfordjournals.aje.a112502
46. Hackam DG, Mamdani M, Li P, Redelmeier DA. Statins and sepsis in patients with cardiovascular disease: a populationbased cohort analysis. Lancet. 2006;367(9508):413–418. doi: https://doi.org/10.1016/S0140-6736(06)68041-0
47. Smeeth L, Cook C, Fombonne E, et al. MMR vaccination and pervasive developmental disorders: a case-control study. Lancet. 2004;364(9438):963–969. doi: https://doi.org/10.1016/S0140-6736(04)17020-7
48. Costanza MC. Matching. Prev Med. 1995;24(5):425–433. doi: https://doi.org/10.1006/pmed.1995.1069
49. Sturmer T, Brenner H. Flexible matching strategies to increase power and efficiency to detect and estimate geneenvironment interactions in case-control studies. Am J Epidemiol. 2002;155(7):593–602. doi: https://doi.org/10.1093/aje/155.7.593
50. Rothman KJ, Greenland S. Matching. In: Modern epidemiology. Rothman KJ, Greenland S, eds. 2nd ed. Lippincott Raven; 1998. p. 147–161.
51. Szklo MF, Nieto J. Epidemiology, Beyond the Basics. Sudbury (MA): Jones and Bartlett; 2000. p. 40–51.
52. Cole P, MacMahon B. Attributable risk percent in casecontrol studies. Br J Prev Soc Med. 1971;25(4):242–244. doi: https://doi.org/10.1136/jech.25.4.242
53. Gissler M, Hemminki E. The danger of overmatching in studies of the perinatal mortality and birthweight of infants born after assisted conception. Eur J Obstet Gynecol Reprod Biol. 1996;69(2): 73–75. doi: https://doi.org/10.1016/0301-2115(95)02517-0
54. Gefeller O, Pfahlberg A, Brenner H, Windeler J. An empirical investigation on matching in published case-control studies. Eur J Epidemiol. 1998;14(4):321–325. doi: https://doi.org/10.1023/A:1007497104800
55. Artama M, Ritvanen A, Gissler M, et al. Congenital structural anomalies in offspring of women with epilepsy-a population-based cohort study in Finland. Int J Epidemiol. 2006;35(2):280–287. doi: https://doi.org/10.1093/ije/dyi234
56. Ebrahim S. Cohorts, infants and children. Int J Epidemiol. 2004;33(6):1165–1166. doi: https://doi.org/10.1093/ije/dyh368
57. Walker M, Whincup PH, Shaper AG. The British Regional Heart Study 1975-2004. Int J Epidemiol. 2004;33(6):1185–1192. doi: https://doi.org/10.1093/ije/dyh295
58. Wieland S, Dickersin K. Selective exposure reporting and Medline indexing limited the search sensitivity for observational studies of the adverse effects of oral contraceptives. J Clin Epidemiol. 2005;58(6): 560–567. doi: https://doi.org/10.1016/j.jclinepi.2004.11.018
59. Anderson HR, Atkinson RW, Peacock JL, et al. Ambient particulate matter and health effects: publication bias in studies of short-term associations. Epidemiology. 2005;16(2):155–163. doi: https://doi.org/10.1097/01.ede.0000152528.22746.0f
60. Winkelmayer WC, Stampfer MJ, Willett WC, Curhan GC. Habitual caffeine intake and the risk of hypertension in women. JAMA. 2005;294(18):2330–2335. doi: https://doi.org/10.1001/jama.294.18.2330
61. Lukanova A, Soderberg S, Kaaks R, et al. Serum adiponectin is not associated with risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2006;15(2):401–402. doi: https://doi.org/10.1158/1055-9965.EPI-05-0836
62. Becher H. The concept of residual confounding in regression models and some applications. Stat Med. 1992;11(13): 1747–1758. doi: https://doi.org/10.1002/sim.4780111308
63. Brenner H, Blettner M. Controlling for continuous confounders in epidemiologic research. Epidemiology. 1997;8(4):429–434. doi: https://doi.org/10.1097/00001648-199707000-00014
64. Phillips MR, Yang G, Zhang Y, et al. Risk factors for suicide in China: a national case-control psychological autopsy study. Lancet. 2002;360(9347):1728–1736. doi: https://doi.org/10.1016/S0140-6736(02)11681-3
65. Pasquale LR, Kang JH, Manson JE, et al. Prospective study of type 2 diabetes mellitus and risk of primary open-angle glaucoma in women. Ophthalmology. 2006. Vol. 113, N 7. P. 1081–1086. doi: https://doi.org/10.1016/j.ophtha.2006.01.066
66. Craig SL, Feinstein AR. Antecedent therapy versus detection bias as causes of neoplastic multimorbidity. Am J Clin Oncol. 1999;22(1):51–56. doi: https://doi.org/10.1097/00000421199902000-00013
67. Rogler LH, Mroczek DK, Fellows M, Loftus ST. The neglect of response bias in mental health research. J Nerv Ment Dis. 2001;189(3):182–187. doi: https://doi.org/10.1097/00005053200103000-00007
68. Murphy EA. The logic of medicine. Baltimore: Johns Hopkins University Press; 1976.
69. Sackett DL. Bias in analytic research. J Chronic Dis. 1979;32(1-2): 51–63. doi: https://doi.org/10.1016/0021-9681(79)90012-2
70. Johannes CB, Crawford SL, McKinlay JB. Interviewer effects in a cohort study. Results from the Massachusetts Women’s Health Study. Am J Epidemiol. 1997;146(5):429–438. doi: https://doi.org/10.1093/oxfordjournals.aje.a009296
71. Bloemenkamp KW, Rosendaal FR, Buller HR, et al. Risk of venous thrombosis with use of current low-dose oral contraceptives is not explained by diagnostic suspicion and referral bias. Arch Intern Med. 1999;159(1)65–70. doi: https://doi.org/10.1001/archinte.159.1.65
72. Feinstein AR. Clinical epidemiology: the architecture of clinical research. Philadelphia: W.B. Saunders; 1985.
73. Yadon ZE, Rodrigues LC, Davies CR, Quigley MA. Indoor and peridomestic transmission of American cutaneous leishmaniasis in northwestern Argentina: a retrospective case-control study. Am J Trop Med Hyg. 2003;68(5):519–526. doi: https://doi.org/10.4269/ajtmh.2003.68.519
74. Anoop S, Saravanan B, Joseph A, et al. Maternal depression and low maternal intelligence as risk factors for malnutrition in children: a community based case-control study from South India. Arch Dis Child. 2004;89(4):325–329. doi: https://doi.org/10.1136/adc.2002.009738
75. Carlin JB, Doyle LW. Sample size. J Paediatr Child Health. 2002;38(3):300–304. doi: https://doi.org/10.1046/j.14401754.2002.00855.x
76. Rigby AS, Vail A. Statistical methods in epidemiology. II: A commonsense approach to sample size estimation. Disabil Rehabil. 1998;20(11):405–410. doi: https://doi.org/10.3109/09638289809166102
77. Schulz KF, Grimes DA. Sample size calculations in randomised trials: mandatory and mystical. Lancet. 2005;365(9467):1348– 1353. doi: https://doi.org/10.1016/S0140-6736(05)61034-3
78. Drescher K, Timm J, Jockel KH. The design of case-control studies: the effect of confounding on sample size requirements. Stat Med. 1990;9(7):765–776. doi: https://doi.org/10.1002/sim.4780090706
79. Devine OJ, Smith JM. Estimating sample size for epidemiologic studies: the impact of ignoring exposure measurement uncertainty. Stat Med. 1998;17(12):1375–1389. doi: https://doi.org/10.1002/(SICI)1097-0258(19980630)17:12<1375::AID-SIM857>3.0.CO;2-D
80. Linn S, Levi L, Grunau PD., et al. Effect measure modification and confounding of severe head injury mortality by age and multiple organ injury severity. Ann Epidemiol. 2007;17(2):142–147. doi: https://doi.org/10.1016/j.annepidem.2006.08.004
81. Altman DG, Lausen B, Sauerbrei W, Schumacher M. Dangers of using “optimal” cutpoints in the evaluation of prognostic factors. J Natl Cancer Inst. 1994;86(11):829–835. doi: https://doi.org/10.1093/jnci/86.11.829
82. Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med. 2006;25(1): 127–141. doi: https://doi.org/10.1002/sim.2331
83. Greenland S. Avoiding power loss associated with categorization and ordinal scores in dose-response and trend analysis. Epidemiology. 1995;6(4):450–454. doi: https://doi.org/10.1097/00001648-199507000-00025
84. Royston P, Ambler G, Sauerbrei W. The use of fractional polynomials to model continuous risk variables in epidemiology. Int J Epidemiol. 1999;28(5):964–974. doi: https://doi.org/10.1093/ije/28.5.964
85. MacCallum RC, Zhang S, Preacher KJ, Rucker D.D. On the practice of dichotomization of quantitative variables. Psychol Methods. 2002;7(1):19–40. doi: https://doi.org/10.1037/1082-989X.7.1.19
86. Altman D.G. Categorizing continuous variables. In: Encyclopedia of biostatistics. Armitage P, Colton T, eds. 2nd ed. Chichester: John Wiley; 2005. pp. 708–711. doi: https://doi.org/10.1002/0470011815.b2a10012
87. Cohen J. The cost of dichotomization. Applied Psychological Measurement. 1983;7(3):249–253. doi: https://doi.org/10.1177/014662168300700301
88. Zhao LP, Kolonel LN. Efficiency loss from categorizing quantitative exposures into qualitative exposures in case-control studies. Am J Epidemiol. 1992:136(4):464–474. doi: https://doi.org/10.1093/oxfordjournals.aje.a116520
89. Cochran WG. The effectiveness of adjustment by subclas sification in removing bias in observational studies. Biometrics. 1968; 24(2):295–313. doi: https://doi.org/10.2307/2528036
90. Clayton D, Hills M. Models for dose-response. Chapter 25. In: Statistical Models in Epidemiology. Oxford: Oxford University Press; 1993. Р. 249–260.
91. Cox DR. Note on grouping. J Am Stat Assoc. 1957;52(280): 543–547. doi: https://doi.org/10.1080/01621459.1957.10501411
92. Il’yasova D, Hertz-Picciotto I, Peters U, et al. Choice of exposure scores for categorical regression in meta-analysis: a case study of a common problem. Cancer Causes Control. 2005;16(4):383–388. doi: https://doi.org/10.1007/s10552-004-5025-x
93. Berglund A, Alfredsson L, Cassidy JD, et al. The association between exposure to a rear-end collision and future neck or shoulder pain: a cohort study. J Clin Epidemiol. 2000;53(11):1089–1094. doi: https://doi.org/10.1016/S0895-4356(00)00225-0
94. Slama R, Werwatz A. Controlling for continuous confounding factors: non- and semiparametric approaches. Rev Epidemiol Sante Publique. 2005;53(Spec No 2):2S65–2S80. doi: https://doi.org/10.1016/S0398-7620(05)84769-8
95. Greenland S. Introduction to regression modelling. Chapter 21. In: Modern epidemiology. Rothman KJ, Greenland S, eds. 2nd ed. Lippincott Raven; 1998. pp. 401–432.
96. Thompson WD. Statistical analysis of case-control studies. Epidemiol Rev. 1994;16(1):33–50. doi: https://doi.org/10.1093/oxfordjournals.epirev.a036143
97. Schlesselman JJ. Logistic regression for case-control studies. Chapter 8.2. Case-control studies: Design, conduct, analysis. New York, Oxford: Oxford University Press; 1982. pp. 235–241.
98. Clayton D, Hills M. Choice and interpretation of models. Chapter 27. Statistical Models in Epidemiology. Oxford: Oxford University Press; 1993. pp. 271–281.
99. Altman DG, Gore SM, Gardner MJ, Pocock SJ. Statistical guidelines for contributors to medical journals. Br Med J. 1983;286(6376):1489–1493. doi: https://doi.org/10.1136/bmj.286.6376.1489
100. International Committee of Medical Journal Editors Uniform requirements for manuscripts submitted to biomedical journals. N Engl J Med. 1997;336:309–315. doi: https://doi.org/10.1056/NEJM199701233360422
101. Mullner M, Matthews H, Altman D.G. Reporting on statistical methods to adjust for confounding: a cross-sectional survey. Ann Intern Med. 2002;136(2):122–126. doi: https://doi.org/10.7326/0003-4819-136-2-200201150-00009
102. Olsen J, Basso O. Re: Residual confounding. Am J Epidemiol. 1999;149(3):290. doi: https://doi.org/10.1093/oxfordjournals.aje.a009805
103. Hallan S, de Mutsert R, Carlsen S, et al. Obesity, smoking, and physical inactivity as risk factors for CKD: are men more vulnerable? Am J Kidney Dis. 2006;47(3):396–405. doi: https://doi.org/10.1053/j.ajkd.2005.11.027
104. Gotzsche P.C. Believability of relative risks and odds ratios in abstracts: cross sectional study. BMJ. 2006;333(7561):231–234. doi: https://doi.org/10.1136/bmj.38895.410451.79
105. Szklo MF, Nieto J. Communicating Results of Epidemiologic Studies. Chapter 9. In: Epidemiology, Beyond the Basics. Sudbury (MA): Jones and Bartlett; 2000. pp. 408–430.
106. Chandola T, Brunner E, Marmot M. Chronic stress at work and the metabolic syndrome: prospective study. BMJ. 2006;332(7540):521–525. doi: https://doi.org/10.1136/bmj.38693.435301.80
107. Vach W, Blettner M. Biased estimation of the odds ratio in case-control studies due to the use of ad hoc methods of correcting for missing values for confounding variables. Am J Epidemiol. 1991;134(8):895–907. doi: https://doi.org/10.1093/oxfordjournals.aje.a116164
108. Little RJ, Rubin DB. A taxonomy of missing-data methods. Chapter 1.4. In: Statistical Analysis with Missing Data. New York: Wiley; 2002. pp. 19–23. doi: https://doi.org/10.1002/9781119013563
109. Ware JH. Interpreting incomplete data in studies of diet and weight loss. N Engl J Med. 2003;348(21):2136–2137. doi: https://doi.org/10.1056/NEJMe030054
110. Rubin DB. Inference and missing data. Biometrika. 1976;63(3): 581–592. doi: https://doi.org/10.1093/biomet/63.3.581
111. Schafer JL. Analysis of Incomplete Multivariate Data. London: Chapman & Hall; 1997. doi: https://doi.org/10.1201/9781439821862
112. Lipsitz SR, Ibrahim JG, Chen MH, Peterson H. Non-ignorable missing covariates in generalized linear models. Stat Med. 1999;18(17-18):2435–2448. doi: https://doi.org/10.1002/(SICI)1097-0258(19990915/30)18:17/18<2435::AIDSIM267>3.0.CO;2-B
113. Rotnitzky A, Robins J. Analysis of semi-parametric regression models with non-ignorable non-response. Stat Med. 1997;16(1-3):81–102. doi: https://doi.org/10.1002/(SICI)10970258(19970115)16:1<81::AID-SIM473>3.0.CO;2-0
114. Rubin DB. Multiple Imputation for Nonresponse in Surveys. New York: John Wiley; 1987. doi: https://doi.org/10.1002/9780470316696
115. Barnard J, Meng XL. Applications of multiple imputation in medical studies: from AIDS to NHANES. Stat Methods Med Res. 1999; 8(1):17–36. doi: https://doi.org/10.1177/096228029900800103
116. Braitstein P, Brinkhof MW, Dabis F, et al. Mortality of HIV-1infected patients in the first year of antiretroviral therapy: comparison between low-income and high-income countries. Lancet. 2006;367(9513):817–824. doi: https://doi.org/10.1016/S0140-6736(06)68337-2
117. Purandare N, Burns A, Daly KJ, et al. Cerebral emboli as a potential cause of Alzheimer’s disease and vascular dementia: casecontrol study. BMJ. 2006. Vol. 332, N 7550. P. 1119–1124. doi: https://doi.org/10.1136/bmj.38814.696493.AE
118. Steyn K, Gaziano TA, Bradshaw D, et al. Hypertension in South African adults: results from the Demographic and Health Survey, 1998. J Hypertens. 2001;19(10):1717–1725. doi: https://doi.org/10.1097/00004872-200110000-00004
119. Lohr SL. Design Effects. Chapter 7.5. In: Sampling: Design and Analysis. Pacific Grove (CA): Duxbury Press; 1999.
120. Dunn NR, Arscott A, Thorogood M. The relationship between use of oral contraceptives and myocardial infarction in young women with fatal outcome, compared to those who survive: results from the MICA case-control study. Contraception. 2001;63(2):65–69. doi: https://doi.org/10.1016/S0010-7824(01)00172-X
121. Rothman KJ, Greenland S. Basic Methods for Sensitivity Analysis and External Adjustment. In: Modern epidemiology. Rothman KJ, Greenland S, eds. 2nd ed. Lippincott Raven; 1998. pp. 343–357.
122. Custer B, Longstreth WT, Phillips LE, et al. Hormonal exposures and the risk of intracranial meningioma in women: a population-based case-control study. BMC Cancer. 2006;6:152. doi: https://doi.org/10.1186/1471-2407-6-152
123. Wakefield MA, Chaloupka FJ, Kaufman NJ, et al. Effect of restrictions on smoking at home, at school, and in public places on teenage smoking: cross sectional study. BMJ. 2000;321(7257): 333–337. doi: https://doi.org/10.1136/bmj.321.7257.333
124. Greenland S. The impact of prior distributions for uncontrolled confounding and response bias: a case study of the relation of wire codes and magnetic fields to childhood leukemia. J Am Stat Assoc. 2003;98(461):47–54. doi: https://doi.org/10.1198/01621450338861905
125. Lash TL, Fink AK. Semi-automated sensitivity analysis to assess systematic errors in observational data. Epidemiology. 2003;14(4): 451–458. doi: https://doi.org/10.1097/01.EDE.0000071419.41011.cf
126. Phillips CV. Quantifying and reporting uncertainty from systematic errors. Epidemiology. 2003;14(4):459–466. doi: https://doi.org/10.1097/01.ede.0000072106.65262.ae
127. Cornfield J, Haenszel W, Hammond EC, et al. Smoking and lung cancer: recent evidence and a discussion of some questions. J Natl Cancer Inst. 1959;22(1):173–203.
128. Langholz B. Factors that explain the power line configuration wiring code-childhood leukemia association: what would they look like? Bioelectromagnetics. 2001;Suppl 5:S19–S31. doi: https://doi.org/10.1002/1521-186x(2001)22:5+<::aid-bem1021>3.3.co;2-9
129. Eisner MD, Smith AK, Blanc PD. Bartenders’ respiratory health after establishment of smoke-free bars and taverns. JAMA. 1998;280(22):1909–1914. doi: https://doi.org/10.1001/jama.280.22.1909
130. Dunne MP, Martin NG, Bailey JM, et al. Participation bias in a sexuality survey: psychological and behavioural characteristics of responders and non-responders. Int J Epidemiol. 1997;26(4): 844–854. doi: https://doi.org/10.1093/ije/26.4.844
131. Schuz J, Kaatsch P, Kaletsch U, et al. Association of childhood cancer with factors related to pregnancy and birth. Int J Epidemiol. 1999;28(4):631–639. doi: https://doi.org/10.1093/ije/28.4.631
132. Cnattingius S, Zack M, Ekbom A, et al. Prenatal and neonatal risk factors for childhood myeloid leukemia. Cancer Epidemiol Biomarkers Prev. 1995;4(5):441–445.
133. Schuz J. Non-response bias as a likely cause of the association between young maternal age at the time of delivery and the risk of cancer in the offspring. Paediatr Perinat Epidemiol. 2003;17(1): 106–112. doi: https://doi.org/10.1046/j.1365-3016.2003.00460.x
134. Slattery ML, Edwards SL, Caan BJ, et al. Response rates among control subjects in case-control studies. Ann Epidemiol. 1995;5(3): 245–249. doi: https://doi.org/10.1016/1047-2797(94)00113-8
135. Schulz KF, Grimes DA. Case-control studies: research in reverse. Lancet. 2002;359(9304):431–434. doi: https://doi.org/10.1016/S0140-6736(02)07605-5
136. Olson SH, Voigt LF, Begg CB, Weiss NS. Reporting participation in case-control studies. Epidemiology. 2002;13(2):123–126. doi: https://doi.org/10.1097/00001648-200203000-00004
137. Morton LM, Cahill J, Hartge P. Reporting participation in epidemiologic studies: a survey of practice. Am J Epidemiol. 2006;163(3):197–203. doi: https://doi.org/10.1093/aje/kwj036
138. Olson SH. Reported participation in case-control studies: changes over time. Am J Epidemiol. 2001;154(6):574–581. doi: https://doi.org/10.1093/aje/154.6.574
139. Sandler DP. On revealing what we’d rather hide: the problem of describing study participation. Epidemiology. 2002;13(2):117. doi: https://doi.org/10.1097/00001648-200203000-00001
140. Hepworth SJ, Schoemaker MJ, Muir KR, et al. Mobile phone use and risk of glioma in adults: case-control study. BMJ. 2006;332(7546): 883–887. doi: https://doi.org/10.1136/bmj.38720.687975.55
141. Hay AD, Wilson A, Fahey T, Peters TJ. The duration of acute cough in pre-school children presenting to primary care: a prospective cohort study. Fam Pract. 2003;20(6):696–705. doi: https://doi.org/10.1093/fampra/cmg613
142. Egger M, Juni P, Bartlett C. Value of flow diagrams in reports of randomized controlled trials. JAMA. 2001;285(15):1996–1999. doi: https://doi.org/10.1001/jama.285.15.1996
143. Osella AR, Misciagna G, Guerra VM, et al. Hepatitis C virus (HCV) infection and liver-related mortality: a population-based cohort study in southern Italy. The Association for the Study of Liver Disease in Puglia. Int J Epidemiol. 2000;29(5):922–927. doi: https://doi.org/10.1093/ije/29.5.922
144. Dales LG, Ury HK. An improper use of statistical significance testing in studying covariables. Int J Epidemiol. 1978;7(4):373–375. doi: https://doi.org/10.1093/ije/7.4.373
145. Maldonado G, Greenland S. Simulation study of confounderselection strategies. Am J Epidemiol. 1993;138(11):923–936. doi: https://doi.org/10.1093/oxfordjournals.aje.a116813
146. Tanis BC, van den Bosch MA, Kemmeren JM, et al. Oral contraceptives and the risk of myocardial infarction. N Engl J Med. 2001;345(25):1787–1793. doi: https://doi.org/10.1056/NEJMoa003216
147. Rothman KJ, Greenland S. Precision and Validity in Epidem iologic Studies. In: Modern epidemiology. Rothman KJ, Greenland S, eds. 2nd ed. Lippincott Raven; 1998. pp. 120–125.
148. Clark TG, Altman DG, De Stavola BL. Quantification of the completeness of follow-up. Lancet. 2002;359(9314):1309–1310. doi: https://doi.org/10.1016/S0140-6736(02)08272-7
149. Qiu C, Fratiglioni L, Karp A, et al. Occupational exposure to electromagnetic fields and risk of Alzheimer’s disease. Epidemiology. 2004;15(6):687–694. doi: https://doi.org/10.1097/01.ede.0000142147.49297.9d
150. Kengeya-Kayondo JF, Kamali A, Nunn AJ, et al. Incidence of HIV-1 infection in adults and socio-demographic characteristics of seroconverters in a rural population in Uganda: 1990–1994. Int J Epidemiol. 1996;25(5):1077–1082. doi: https://doi.org/10.1093/ije/25.5.1077
151. Mastrangelo G, Fedeli U, Fadda E, et al. Increased risk of hepatocellular carcinoma and liver cirrhosis in vinyl chloride workers: synergistic effect of occupational exposure with alcohol intake. Environ Health Perspect. 2004;112(11):1188–1192. doi: https://doi.org/10.1289/ehp.6972
152. Salo PM, Arbes SJ, Sever M, et al. Exposure to Alternaria alternata in US homes is associated with asthma symptoms. J Allergy Clin Immunol. 2006;118(4):892–898. doi: https://doi.org/10.1016/j.jaci.2006.07.037
153. Pocock SJ, Clayton TC, Altman DG. Survival plots of time-toevent outcomes in clinical trials: good practice and pitfalls. Lancet. 2002;359(9318):1686–1689. doi: https://doi.org/10.1016/S0140-6736(02)08594-X
154. Sasieni P. A note on the presentation of matched casecontrol data. Stat Med. 1992;11(5):617–620. doi: https://doi.org/10.1002/sim.4780110506
155. Lee GM, Neutra RR, Hristova L, et al. A nested case-control study of residential and personal magnetic field measures and miscarriages. Epidemiology. 2002;13(1):21–31. doi: https://doi.org/10.1097/00001648-200201000-00005
156. Tiihonen J, Walhbeck K, Lonnqvist J, et al. Effectiveness of antipsychotic treatments in a nationwide cohort of patients in community care after first hospitalisation due to schizophrenia and schizoaffective disorder: observational follow-up study. BMJ. 2006;333(7561):224. doi: https://doi.org/10.1136/bmj.38881.382755.2F
157. Christenfeld NJ, Sloan RP, Carroll D, Greenland S. Risk factors, confounding, and the illusion of statistical control. Psychosom Med. 2004;66(6):868–875. doi: https://doi.org/10.1097/01.psy.0000140008.70959.41
158. Smith GD, Phillips A. Declaring independence: why we should be cautious. J Epidemiol Community Health. 1990;44(4):257–258. doi: https://doi.org/10.1136/jech.44.4.257
159. Greenland S, Neutra R. Control of confounding in the assessment of medical technology. Int J Epidemiol. 1980;9(4): 361–367. doi: https://doi.org/10.1093/ije/9.4.361
160. Robins JM. Data, design, and background knowledge in etiologic inference. Epidemiology. 2001;12(3):313–320. doi: https://doi.org/10.1097/00001648-200105000-00011
161. Sagiv SK, Tolbert PE, Altshul LM, Korrick SA. Organochlorine exposures during pregnancy and infant size at birth. Epidemiology. 2007;18(1):120–129. doi: https://doi.org/10.1097/01.ede.0000249769.15001.7c
162. World Health Organization. Body Mass Index (BMI). 2007. Available online: http://www.euro.who.int/nutrition/20030507_1. Accessed on September 10, 2007.
163. Beral V. Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet. 2003:362(9382):419–427. doi: https://doi.org/10.1016/s0140-6736(03)14065-2
164. Hill AB. The environment and disease: Association or causation? Proc R Soc Med. 1965;58(5):295–300. doi: https://doi.org/10.1177/003591576505800503
165. Vineis P. Causality in epidemiology. Soz Praventivmed. 2003; 48(2):80–87. doi: https://doi.org/10.1007/s00038-003-1029-7
166. Empana JP, Ducimetiere P, Arveiler D, et al. Are the Framingham and PROCAM coronary heart disease risk functions applicable to different European populations? The PRIME Study. Eur Heart J. 2003;24(21): 1903–1911. doi: https://doi.org/10.1016/j.ehj.2003.09.002
167. Tunstall-Pedoe H, Kuulasmaa K, Mahonen M, et al. Contribution of trends in survival and coronary-event rates to changes in coronary heart disease mortality: 10-year results from 37 WHO MONICA project populations. Monitoring trends and determinants in cardiovascular disease. Lancet. 1999;353(9164):1547–1557. doi: https://doi.org/10.1016/S0140-6736(99)04021-0
168. Cambien F, Chretien JM, Ducimetiere P, et al. Is the relationship between blood pressure and cardiovascular risk dependent on body mass index? Am J Epidemiol. 1985;122(3):434–442. doi: https://doi.org/10.1093/oxfordjournals.aje.a114124
169. Hosmer DW, Taber S, Lemeshow S. The importance of assessing the fit of logistic regression models: a case study. Am J Public Health. 1991;81(12):1630–1635. doi: https://doi.org/10.2105/AJPH.81.12.1630
170. Tibshirani R. A plain man’s guide to the proportional hazards model. Clin Invest Med. 1982;5(1):63–68.
171. Rockhill B, Newman B, Weinberg C. Use and misuse of population attributable fractions. Am J Public Health. 1998;88(1): 15–19. doi: https://doi.org/10.2105/AJPH.88.1.15
172. Uter W, Pfahlberg A. The application of methods to quantify attributable risk in medical practice. Stat Methods Med Res. 2001;10(3):231–237. doi: https://doi.org/10.1177/096228020101000305
173. Schwartz LM, Woloshin S, Dvorin EL, Welch HG. Ratio measures in leading medical journals: structured review of accessibility of underlying absolute risks. BMJ. 2006;333(7581):1248. doi: https://doi.org/10.1136/bmj.38985.564317.7C
174. Nakayama T, Zaman MM, Tanaka H. Reporting of attributable and relative risks, 1966–97. Lancet. 1998. Vol. 351, N 9110. P. 1179. doi: https://doi.org/10.1016/S0140-6736(05)79123-6
175. Cornfield J. A method of estimating comparative rates from clinical data; applications to cancer of the lung, breast, and cervix. J Natl Cancer Ins. 1951;11(6):1269–1275.
176. Pearce N. What does the odds ratio estimate in a case-control study? Int J Epidemiol. 1993;22(6):1189–1192. doi: https://doi.org/10.1093/ije/22.6.1189
177. Rothman KJ, Greenland S, Rothman KJ, Greenland S. Measures of Disease Frequency. In: Modern epidemiology. Rothman KJ, Greenland S, eds. 2nd ed. Lippincott Raven; 1998. pp. 44–45.
178. Doll R, Hill AB. The mortality of doctors in relation to their smoking habits: a preliminary report. BMJ. 1954;1(4877): 1451–1455. doi: https://doi.org/10.1136/bmj.1.4877.1451
179. Ezzati M, Lopez AD. Estimates of global mortality attributable to smoking in 2000. Lancet. 2003;362(9387):847–852. doi: https://doi.org/10.1016/S0140-6736(03)14338-3
180. Greenland S. Applications of Stratified Analysis Methods. In: Modern epidemiology. Rothman KJ, Greenland S, eds. 2nd ed. Lippincott Raven, 1998. pp. 295–297.
181. Rose G. Sick individuals and sick populations. Int J Epidemiol. 2001;30(3):427–432. discussion. doi: https://doi.org/10.1093/ije/30.3.427
182. Vandenbroucke JP, Koster T, Briet E, et al. Increased risk of venous thrombosis in oral-contraceptive users who are carriers of factor V Leiden mutation. Lancet. 1994;344(8935):1453–1457. doi: https://doi.org/10.1016/S0140-6736(94)90286-0
183. Botto LD, Khoury MJ. Commentary: facing the challenge of gene-environment interaction: the two-by-four table and beyond. Am J Epidemiol. 2001;153(10):1016–1020. doi: https://doi.org/10.1093/aje/153.10.1016
184. Wei L, MacDonald TM, Walker BR. Taking glucocorticoids by prescription is associated with subsequent cardiovascular disease. Ann Intern Med. 2004;141(10):764–770. doi: https://doi.org/10.7326/0003-4819-141-10-200411160-00007
185. Martinelli I, Taioli E, Battaglioli T, et al. Risk of venous thromboembolism after air travel: interaction with thrombophilia and oral contraceptives. Arch Intern Med. 2003;163(22):2771–2774. doi: https://doi.org/10.1001/archinte.163.22.2771
186. Kyzas PA, Loizou KT, Ioannidis JP. Selective reporting biases in cancer prognostic factor studies. J Natl Cancer Inst. 2005;97(14):1043–1055. doi: https://doi.org/10.1093/jnci/dji184
187. Rothman KJ, Greenland S, Walker AM. Concepts of interaction. Am J Epidemiol. 1980;112(4):467–470. doi: https://doi.org/10.1093/oxfordjournals.aje.a113015
188. Saracci R. Interaction and synergism. Am J Epidemiol. 1980;112(4):465–466. doi: https://doi.org/10.1093/oxfordjournals.aje.a113014
189. Rothman KJ. Epidemiology. An introduction. Oxford: Oxford University Press; 2002. pp. 168–180.
190. Rothman KJ. Interactions Between Causes. Modern epidemiology. Boston: Little Brown; 1986. pp. 311–326.
191. Hess DR. How to write an effective discussion. Respir Care. 2004;49(10):1238–1241.
192. Horton R. The hidden research paper. JAMA.2002;287(21): 2775–2778. doi: https://doi.org/10.1001/jama.287.21.2775
193. Horton R. The rhetoric of research. BMJ. 1995;310(6985): 985–987. doi: https://doi.org/10.1136/bmj.310.6985.985
194. Docherty M, Smith R. The case for structuring the discussion of scientific papers. BMJ. 1999;318(7193):1224–1225. doi: https://doi.org/10.1136/bmj.318.7193.1224
195. Perneger TV, Hudelson PM. Writing a research article: advice to beginners. Int J Qual Health Care. 2004;16(3):191–192. doi: https://doi.org/10.1093/intqhc/mzh053
196. Annals of Internal Medicine. Information for authors. Available online: http://www.annals.org/shared/author_info.html. Accessed on September 10, 2007.
197. Maldonado G, Poole C. More research is needed. Ann Epidemiol. 1999;9(1):17–18. doi: https://doi.org/10.1016/S1047-2797(98)00050-7
198. Phillips CV. The economics of ‘more research is needed’. Int J Epidemiol. 2001;30(4):771–776. doi: https://doi.org/10.1093/ije/30.4.771
199. Winkleby MA, Kraemer HC, Ahn DK, Varady AN. Ethnic and socioeconomic differences in cardiovascular disease risk factors: findings for women from the Third National Health and Nutrition Examination Survey, 1988–1994. JAMA. 1998;280(4):356–362. doi: https://doi.org/10.1001/jama.280.4.356
200. Galuska DA, Will JC, Serdula MK, Ford ES. Are health care professionals advising obese patients to lose weight? JAMA. 1999;282(16):1576–1578. doi: https://doi.org/10.1001/jama.282.16.1576
201. Spearman C. The proof and measurement of association between two things. Am J Psychol. 1904;15(1):72–101. doi: https://doi.org/10.2307/1412159
202. Fuller WA, Hidiroglou M.A. Regression estimates after correcting for attenuation. J Am Stat Assoc. 1978;73(361):99–104. doi: https://doi.org/10.1080/01621459.1978.10480011
203. MacMahon S, Peto R, Cutler J, et al. Blood pressure, stroke, and coronary heart disease. Part 1, Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet. 1990;335(8692):765–774. doi: https://doi.org/10.1016/0140-6736(90)90878-9
204. Phillips AN, Smith GD. How independent are “independent” effects? Relative risk estimation when correlated exposures are measured imprecisely. J Clin Epidemiol. 1991;44(11):1223–1231. doi: https://doi.org/10.1016/0895-4356(91)90155-3
205. Phillips AN, Smith GD. Bias in relative odds estimation owing to imprecise measurement of correlated exposures. Stat Med. 1992; 11(7):953–961. doi: https://doi.org/10.1002/sim.4780110712
206. Greenland S. The effect of misclassification in the presence of covariates. Am J Epidemiol. 1980;112(4):564–569. doi: https://doi.org/10.1093/oxfordjournals.aje.a113025
207. Poole C, Peters U, Il’yasova D, Arab L. Commentary: This study failed? Int J Epidemiol. 2003;32(4):534–535. doi: https://doi.org/10.1093/ije/dyg197
208. Kaufman JS, Cooper RS, McGee DL. Socioeconomic status and health in blacks and whites: the problem of residual confounding and the resiliency of race. Epidemiology. 1997;8(6):621–628. doi: https://doi.org/10.1097/00001648-199710000-00002
209. Greenland S. Randomization, statistics, and causal inference. Epidemiology. 1990;1(6):421–429. doi: https://doi.org/10.1097/00001648-199011000-00003
210. Taubes G. Epidemiology faces its limits. Science. 1995;269 (5221):164–169. doi: https://doi.org/10.1126/science.7618077
211. Temple R. Meta-analysis and epidemiologic studies in drug development and postmarketing surveillance. JAMA. 1999;281(9): 841–844. doi: https://doi.org/10.1001/jama.281.9.841
212. Greenberg RS, Shuster JL. Epidemiology of cancer in children. Epidemiol Rev. 1985;7:22–48. doi: https://doi.org/10.1093/oxfordjournals.epirev.a036284
213. Kushi LH, Mink PJ, Folsom AR, et al. Prospective study of diet and ovarian cancer. Am J Epidemiol. 1999;149(1):21–31. doi: https://doi.org/10.1093/oxfordjournals.aje.a009723
214. Kemmeren JM, Algra A, Meijers JC, et al. Effect of second- and third-generation oral contraceptives on the protein C system in the absence or presence of the factor V Leiden mutation: a randomized trial. Blood. 2004;103(3):927–933. doi: https://doi.org/10.1182/blood-2003-04-1285
215. Egger M, May M, Chene G, et al. Prognosis of HIV-1-infected patients starting highly active antiretroviral therapy: a collaborative analysis of prospective studies. Lancet. 2002;360(9327):119–129. doi: https://doi.org/10.1016/S0140-6736(02)09411-4
216. Campbell DT. Factors relevant to the validity of experiments in social settings. Psychol Bull. 1957;54(4):297–312. doi: https://doi.org/10.1037/h0040950
217. Justice AC, Covinsky KE, Berlin JA. Assessing the generalizability of prognostic information. Ann Intern Med. 1999;130(6):515–524. doi: https://doi.org/10.7326/0003-4819-130-6-19990316000016
218. Krimsky S, Rothenberg LS. Conflict of interest policies in science and medical journals: editorial practices and author disclosures. Sci Eng Ethics. 2001;7(2):205–218. doi: https://doi.org/10.1007/s11948-001-0041-7
219. Bekelman JE, Li Y, Gross C. Scope and impact of financial conflicts of interest in biomedical research: a systematic review. JAMA. 2003;289(4):454–465. doi: https://doi.org/10.1001/jama.289.4.454
220. Davidson RA. Source of funding and outcome of clinical trials. J Gen Intern Med. 1986;1(3):155–158. doi: https://doi.org/10.1007/BF02602327
221. Stelfox HT, Chua G, O’Rourke K, Detsky AS. Conflict of interest in the debate over calcium-channel antagonists. N Engl J Med. 1998;338(2):101–106. doi: https://doi.org/10.1056/NEJM199801083380206
222. Lexchin J, Bero LA, Djulbegovic B, Clark O. Pharmaceutical industry sponsorship and research outcome and quality: systematic review. BMJ. 2003;326(7400):1167–1170. doi: https://doi.org/10.1136/bmj.326.7400.1167
223. Als-Nielsen B, Chen W, Gluud C, Kjaergard LL. Association of funding and conclusions in randomized drug trials: a reflection of treatment effect or adverse events? JAMA. 2003;290(7):921–928. doi: https://doi.org/10.1001/jama.290.7.921
224. Barnes DE, Bero LA. Why re s on the health effects of passive smoking reach different conclusions. JAMA. 1998;279(19): 1566–1570. doi: https://doi.org/10.1001/jama.279.19.1566
225. Barnes DE, Bero LA. Industry-funded research and conflict of interest: an analysis of research sponsored by the tobacco industry through the Center for Indoor Air Research. J Health Polit Policy Law. 1996;21(3):515–542. doi: https://doi.org/10.1215/03616878-21-3-515
226. Glantz SA, Barnes DE, Bero L, et al. Looking through a keyhole at the tobacco industry. The Brown and Williamson documents. JAMA. 1995;274(3):219–224. doi: https://doi.org/10.1001/jama.1995.03530030039032
227. Huss A, Egger M, Hug K, et al. Source of funding and results of studies of health effects of mobile phone use: systematic review of experimental studies. Environ Health Perspect. 2007;115(1):1–4. doi: https://doi.org/10.1289/ehp.9149
228. Safer DJ. Design and reporting modifications in industrysponsored comparative psychopharmacology trials. J Nerv Ment Dis. 2002;190(9):583–592. doi: https://doi.org/10.1097/00005053-200209000-00002
229. Aspinall RL, Goodman NW. Denial of effective treatment and poor quality of clinical information in placebo controlled trials of ondansetron for postoperative nausea and vomiting: a review of published trials. BMJ. 1995;311(7009):844–846. doi: https://doi.org/10.1136/bmj.311.7009.844
230. Chan AW, Hrobjartsson A, Haahr MT, et al. Empirical evidence for selective reporting of outcomes in randomized trials: comparison of protocols to published articles. JAMA. 2004;291(20): 2457–2465. doi: https://doi.org/10.1001/jama.291.20.2457
231. Melander H, Ahlqvist-Rastad J, Meijer G, Beermann B. Evidence b(i)ased medicine-selective reporting from studies sponsored by pharmaceutical industry: review of studies in new drug applications. BMJ. 2003;326(7400):1171–1173. doi: https://doi.org/10.1136/bmj.326.7400.1171
232. Scherer RW, Langenberg P, von Elm E. Full publication of results initially presented in abstracts. Cochrane Database Syst Rev. 2007;(2):MR000005. ://doi.org/10.1002/14651858.MR000005.pub3.
233. Moher D, Schulz KF, Altman DG. The CONSORT statement: revised recommendations for improving the quality of reports of parallelgroup randomised trials. Lancet. 2001;357(9263):1191–1194. doi: https://doi.org/10.1016/S0140-6736(00)04337-3
234. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–2012. doi: https://doi.org/10.1001/jama.283.15.2008
235. Altman DG, Schulz KF, Moher D, et al. The revised CONSORT statement for reporting randomized trials: explanation and elaboration. Ann Intern Med. 2001;134(8):663–694. doi: https://doi.org/10.7326/0003-4819-134-8-200104170-00012
236. Moher D. CONSORT: an evolving tool to help improve the quality of reports of randomized controlled trials. Consolidated Standards of Reporting Trials. JAMA. 1998;279(18):1489–1491. doi: https://doi.org/10.1001/jama.279.18.1489
237. Begg C., Cho M., Eastwood S., et al. Improving the quality of reporting of randomized controlled trials. The CONSORT statement. JAMA. 1996;276(8):637–639. doi: https://doi.org/10.1001/jama.276.8.637
Рецензия
Для цитирования:
Vandenbroucke J.P., von Elm E., Altman D.G., Gotzsche P.C., Mulrow C.D., Pocock S.J., Poole C., Schlesselman J.J., Egger M. Повышение качества отчетов о наблюдательных исследованиях в эпидемиологии (STROBE): разъяснения и уточнения. Вопросы современной педиатрии. 2022;21(3):173-208. https://doi.org/10.15690/vsp.v21i3.2426
For citation:
Vandenbroucke J.P., von Elm E., Altman D.G., Gotzsche P.C., Mulrow C.D., Pocock S.J., Poole C., Schlesselman J.J., Egger M. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and Elaboration. Current Pediatrics. 2022;21(3):173-208. (In Russ.) https://doi.org/10.15690/vsp.v21i3.2426